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ABSTRACT 

In this dissertation a methodology for analyzing complex decision 

problems is developed and is applied to an electrical power system planning 

problem. The methodology is based on the idea of decomposing a complex 

problem into a number of simpler subproblems and then coordinating their 

solution to solve the original complex problem. 

The methodology is primarily designed for strategic decision problems 

where a computerized model is appropriate. The methodology has two main 

parts: The first part is concerned with structuring the model for the 

decision problem, identifying the subproblems, and selecting a method of 

coordinating the subproblems; The second part provides a mathematical 

foundation for solving problems by decomposition. 

In Chapter 2 the mathematical foundations of decomposition for deter­

ministic decision problems are developed by using a series of increasingly 

complicated examples. In each example, a decision problem is interpreted 

as a resource allocation problem among a number of independent projects 

where the resources must be purchased in a resource market. The allocation 

of the resources among the projects is usually coordinated through a 

pricing scheme. By assigning a price to each resource and then adjusting 

the prices in an organized way, an optimal solution to the original 

decision problem is obtained. These examples show how to decompose 

decision problems involving time, multiple resources and multi-attribute 

preference structures. 

The mathematical foundations developed in Chapter 2 are based on a 
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simple theorem that provides a test for the optimal solution to a 

resource allocation problem. The theorem provides sufficient condi­

tions for an optimum so that trial solutions that pass the test are 

guaranteed to be globally optimal. Solutions that do not pass the 

test mayor may not be optimal. The theorem is applicable to nonlinear 

problems with decision variables defined on either discrete or con­

tinuous sets. 

In Chapter 3 the first part of the methodology is demonstrated 

by applying it to a capacity expansion problem for an actual electrical 

power system. Detailed models of the generating plants, system operating 

cost, and system reliability are developed. Decomposition of this 

problem provides several insights into power system planning and shows 

how to decompose problems with complex technical interactions between 

projects. 

A mathematical foundation for decomposition under uncertainty is 

developed in Chapter 4. All of the results of Chapter 2 are extended 

to problems under uncertainty including problems with a multi-attribute 

risk preference function (von Neumann-Morgensterm utility function). 

A new notation for describing decision problems under uncertainty 

plays a key role in this chapter. The results of this chapter can 

be applied to decision problems where the uncertainty is resolved 

gradually, or quickly, over time and the decisions are dynamically 

adjusted in response to new information. 

The analysis of the electrical power system is extended in Chapter 

5 to include uncertainty in a crucial state variable. The solution of 

this problem demonstrates the computational feasibility of decomposition 
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under uncertainty. The results of this chapter, together with Chapter 

2, demonstrate that every aspect of this difficult power system problem 

can be treated by the methodology. 

The methodology can be applied to any strategic decision problem, 

although it is most useful in problems with many decision variables. 

When it is not appropriate to gather all of the information relevant 

to the problem in one place, then the methodology suggests ways to 

decentralize the problem so that the decisions are delegated to several 

decision makers. 

This dissertation provides significant contributions to power 

system planning and to the theory of decomposition under conditions of 

certainty and uncertainty. The most important contribution, however, 

is a complete methodology for solving a class of complex decision 

problems. 
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CHAPTER I 

INTRODUCTION 

strategic planning problems are often characterized by their 

importance, complexity, dynamic effects, uncertainty, and complex 

preferences. Many strategic planning problems require computerized 

models if a careful analysis is to be performed. In this dissertation 

a methodology is developed for analyzing complex planning problems 

where detailed models are appropriate. 

At present, the analyst's tools are rather limited in situations 

where complex models are required. Generally, the analyst must choose 

between the following two approaches to modeling and optimization: 

1. Standard modeling and optimization methods such as linear 

programming which solve an approximation to the actual 

problem. 

2. Detailed simulation models which require heuristic optimization 

methods. 

While some intermediate choices exist, they do not provide the gener­

ality required for analyzing many complex problems. In this disser­

tation very general modeling and optimization methods are developed 

that take advantage of the natural structure of a complex problem 

rather than imposing a restrictive structure on the problem. 

In this chapter many features of the methodology will be discussed. 
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First, however, the objectives of the dissertation will be formally 

stated. 

1.1 statement of Objectives 

The dissertation has two primary objectives. They are 

1. To develop a methodology for the solution of strategic 

decision problems where detailed models can be economically 

justified, and 

2. To apply the methodology to electrical power system planning. 

The restriction to strategic decision problems implies that the 

methodology is not designed for analyzing the tactical decisions such 

as the decisions encountered in the daily operation of an electrical 

power system. The restriction to computerized models implies that 

all of the available information relevant to the decision can be 

gathered in one place, as opposed to the situation in decentralized 

organizations where most of the detailed information is diffused 

among several decision makers and experts. Some of the reasons for 

these restrictions will become clear as we proceed. At many points 

in the development of the methodology we will indicate which portions 

of the methodology apply to a more general class of problems. 

1.2 Introduction to the Basic Concepts of the Methodology 

The methodology is based on the idea of decompOSing+ complex 

+ It is important to note that the term "decomposition" is often used 
to describe the situation where two or more subproblems (or systems) 
do not interact or where the interactions are insignificant. In such 
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problems into a number of simpler, independent subproblems and then 

coordinating their solution to solve the original problem. Coordi-

nation of the decomposed subproblems usually is achieved through a 

pricing scheme. By adjusting the prices in an organized way a solu-

tion to the original problem usually can be obtained. 

The methodology can be divided into two main parts. The first 

part is concerned with structuring the model for the decision problem, 

identifying the subproblems, and selecting a method of coordinating 

the subproblems. The second part of the methodology provides a mathe-

matical foundation for solving problems by decomposition. 

In the first part of the methodology it is often useful to 

interpret problems in terms of a resource allocation problem among 

a number of independent projects where the resources are purchased 

in a resource market. When the prices (marginal costs) of the 

resources are provided, then it is relatively easy to determine the 

optimal amount of resources that each project should conSUDle. By-

adjusting the prices in ways that will be further described, the 

allocation of resources among the projects can be coordinated so that 

the optimal allocation for the whole problem is achieved. 

The key to devising effective computational methods is to define 

the resources and projects so that the projects are independent when 

cases decomposition is easy to achieve. In this dissertation we are 
generally concerned with subproblems that interact in some way. The 
decomposition achieved by the methods of this dissertation is not 
decomposition in the strict sense that the subproblems do not interact. 
Rather, we say that given the prices on the resources, which cause 
the interactions, we can act as if the subproblems do not interact. 
The determination of the appropriate prices is considered to be a 
separate problem. 
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when the prices of the resources are provided. One approach to iden­

tifying the resources and projects is to use calculus to obtain the 

necessary conditions for an optimal allocation. The necessary con­

ditions can be expressed as a set of simultaneous equations where 

the decision variables are the unknown variables. By considering 

iterative methods for solving these equations, insight can be developed 

into the problem of defining resources and. projects. When calculus 

cannot be applied to a problem the approach just described still pro-

vides insight, but the second part of the methodology must be applied 

to justify the resulting computational methods. 

The second part of the methodology is based on a simple theorem 

that provides a test for the optimal solution to a resource allocation 

problem. The theorem provides sufficient conditions for an optimum 

so that trial solutions that pass the test are guaranteed to be globally 

optimal. Solutions that do not pass the test mayor may not be optimal. 

Thus, in a sense, the theorem provides a "fail-safe" test for the 

optimal solution to a resource allocation problem, since it never 

indicates a trial solution is optimal when a better allocation is 

possible. 

The conditions of the theorem define two optimization problems 

that are related to the original problem. If the two problems have 

the same solution, then the theorem guarantees that this solution 

is the solution to the original problem. Significantly, the theorem 
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is applicable to nonlinear problems where the decision variables are 

defined on either discrete or continuous sets. 

The theorem is initially developed to be applied to relatively 

simple problems. However, the theorem can be easily extended to apply 

to very complex problems. The extension of the theorem to more complex 

problems requires no important new concepts. In its most general 

form the theorem applies to problems involving time, uncertainty and 

complex preferences. 

In practice, the methodology does not provide an inviolable 

procedure for analyzing a strategic decision problem. Usually, an 

analysis of a problem is performed iteratively, in the sense that 

successive improvements are made in the formulation of the problem 

and design of the computational methods. In order to illustrate 

some of these practical aspects of the methodolobYJ it is useful to 

consider an example. In this dissertation the methodology is applied 

to the analysis of capacity expansion decisions in an actual power 

system. The analysis of this power system example will be discussed 

in detail in Chapter III. The following section provides an informal 

introduction to the example and insight into the method of analysis. 

1.3 Applications to Electrical Power System Planning 

An important strategic decision problem in electrical power 

system planning concerns the installation of new generating plants. 
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The decisions in this problem include selecting the size, type, and 

date of installation of the new generating plants. 

In Chapter III an actual electrical power system problem is 

solved by decomposing it so that each alternative generating plant 

is viewed as a project or subproblem. In this section the results 

of the example will be summarized in terms of a hypothetical decen­

tralized organization designed specifically to plan and operate the 

power system. This summary also provides insight into developing 

organizational interpretations for other complex problems. 

At the head of this hypothetical organization is the president 

who bears the ultimate responsibility for planning the power system. 

Normally, he does not make the major decisions. Instead, the decisions 

are delegated to the plant and system managers. 

The plant managers are responsible for installing generating 

plants. For example, one of the plant managers is responsible for 

installation decisions for one type of plant (hydro, nuclear, conven­

tional thermal, or gas turbine) in one particular year. A plant 

manager's decisions include choosing the size of the plant and 

possibly selecting optional eCluipment and finanCing methods. 

The system managers are concerned with the operation of the system. 

Two types of system managers are together responsible for meeting the 

demands for electricity. The first type of system manager is the 

operating system manager. He is concerned with selecting the best 

system for generating electricity. The second type of system manager 

is the reliability system manager, who is concerned with selecting 
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the best system for assuring that the demands for electricity can be 

met. For each year in the planning period it is useful to hypothesize 

distinct system managers. 

If each of the plant and system managers could act as if each were 

running an independent business then the problem of planning the expansion 

of the power system would be relatively easy. Unfortunately, the system 

managers prefer efficient and reliable plants while the plant managers, 

who do not bear the costs of operation and service outages, prefer 

inefficient and unreliable plants because they cost less. Clearly, 

some form of coordination is necessary. 

One way the decisions can be coordinated is to compensate managers 

for costs they incur because of the actions of other managers. If 

the mechanism for compensating the managers is carefully designed then 

each manager "Jill still retain a degree of independence. 

The simplest method of compensating the managers is a pricing 

scheme. A pricing scheme, for example, sets prices on all the services 

(resources) provided by the plant managers.+ The system managers are 

re~uired to compensate the plant managers at these prices for the 

~uantity of each service provided. For the particular electrical system 

considered in this dissertation the services include the total capacity 

of each type of plant, the amount of hydro energy available, the hourly 

operating costs of the plants, and the average available total capacity 

based on reliability considerations. Separate services and prices 

t In this dissertation we carefully distinguish between the "price" 
of a resource and the "cost" of a resource. The cost of a number of 
units of a resource is the price of the resource times the number of 
units. Thus, for example, the cost is measured in dollars, whereas the 
price is in dollars per unit. 
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on the services are defined for each year in the planning period. 

Theoretically, the entire decision problem must be solved to 

determine the prices of the services. For the optimal policy the price 

of a service is the value of an additional unit of service provided 

to the system managers. A practical method is to estimate the prices 

and then successively adjust the prices until the correct prices are 

obtained. 

There are many methods of successively adjusting the prices. In 

one of the methods the organization's president initially estimates 

the prices. Given the prices the managers in the decentralized organi­

zation independently choose the amounts of each service that they would 

provide or consume at these prices. If the managers happen to agree 

on the amounts of services, then the president has correctly estimated 

the prices. If the managers do not agree, then the difference between 

the proposed amount of each service provided and the amount consumed 

indicates whether the price on that service should be increased or 

decreased. For example, if more hydro capacity is demanded by the 

system managers than is supplied by the plant managers, then the price 

of hydro capacity is too low and should be increased on the next iteration 

of the prices. 

This approach to planning by a decentralized organization is analo­

gous to the decomposition of a detailed model of the planning problem. 

The decomposition approach is computationally superior to a direct 

approach if the number of iterations required is small. Usually, the 

computational effort required for each iteration is orders of magnitudes 

less than the computational effort required to solve the entire problem 
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directly. Thus, significant overall computational savings are possible 

with the method described above. 

The results of this dissertation can be viewed as providing a 

theoretical foundation for the intuitive decomposition methods described 

above. An important part of the methodology developed in this disser­

tation is directed at the problem of identifying the services or 

resources that are priced to coordinate the independent subproblems. 

1.4 Summary of Results 

In Chapter II a theoretical foundation for the solution of extremely 

general optimization problems is developed. While the theory is formally 

valid for almost any optimization problem the results of the theory are 

of practical interest only for unconstrained optimization problems 

having special types of structure. 

The theory is based on a simple mathematical result that provides 

a test for the optimality of a trial solution to an optimization problem. 

The test provides sufficient conditions for an optimu~ so that any trial 

solution that passes the test is guaranteed to be a global optimum. 

Trial solutions that do not pass the test mayor may not be optimal. 

Two general methods for searching for the optimal solution to a 

problem are developed. Neither of the methods can be guaranteed to 

converge rapidly for all possible problems. However, the issue of 

convergence is not crucial for strategic decision problems of the type 

that require a detailed computer model. For this class of problems, 

the analyst can afford to interact with the computer to choose the 

best method for solving a large problem. 
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The computational power of the theoretical methods depends on the 

optimization problem having certain special structure. Usually this 

structure can be interpreted in terms of a resource allocation problem 

among a number of independent economic units where the resources must 

be purchased in various markets. Few problems naturally exhibit the 

required structure. Often, a complex problem must be carefully formu­

lated to obtain this special structure. However, this approach is very 

effective for many complex problems that cannot be readily solved by 

any other method. 

The initial theoretical results in Chapter II are mathematically 

similar to certain methods of solving constrained optimization problems. 

All of the results of this dissertation are stated in an unconstrained 

form. For simple problems the distinction between constrained and 

unconstrained problems is often unimportant. For complex problems the 

superiority of the unconstrained formulation of problems is evidenced 

by the success of this dissertation in treating problems with very 

arbitrary objective functions and complex forms of uncertainty. 

The results in Chapter IV on decomposition under uncertainty are 

valid for extremely general problems. Problems where the uncertainty 

is slowly, or quickly, resolved over time and the decisions are dynam~ 

ically adjusted in response to new information can be treated by the 

methods developed in Chapter IV. A significant result of this chapter 

is that problems under uncertainty can be decomposed using exactly the 

same techniques as problems under certainty. There are very few non­

trivial results on decomposition under uncertainty in the literature. 

The theoretical results in this dissertation are interpreted in 
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terms of hypothetical decentralized organizations wherever possible. 

Since the mathematical foundations of decomposition and decentralization 

are similar, this dissertation can be viewed as a contribution to the 

theory of designing decentralized organizations. Conceptually, this 

theory can be applied within corporations and at all levels of govern­

ment. However, none of the practical issues concerning decentralization 

are considered here. 

In Chapter III a complicated electrical power system planning 

problem is posed and solved by decomposition. The problem is based 

on an analysis of an actual electrical system. The application to 

electrical power system planning is a convenient way of communicating 

an approach to problem formulation. By using this approach, decompo­

sition can be applied to very complex problems. 

The analysis of the power system problem requires no more mathe­

matical tools than the simplest problem formulated in Chapter II. The 

level of mathematics requires elementary calculus at most. The only 

complicating factor is the notational problem caused by the very size 

and complexity of the power system problem. 

The analysis of the power system problem yields important general 

insights into power system planning. In Chapter V the analysis is 

extended to include uncertainty in some of the crucial variables of the 

power system problem. Thus, this dissertation is both a contribution 

to electrical power system planning and a methodology for solving 

complex decision problems by decomposition. 

1.5 Related Literature 

Many of the basic ideas behind decomposition have been in existence 
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for some time. There is a considerable literature on decomposition and 

decentralization in the fields of economics, business and operations 

research. 

The results on the decomposition of unconstrained optimization 

problems in this dissertation have drawn on the vast work on the decom­

position of constrained optimization problems. From our point of view, 

the paper by Everett [12] is the best introduction to the decomposition 

of constrained optimization problems. The work summarized in Arrow 

and Hurwicz [ 2] is particularly relevant to the design of algorithms. 

Lasdon [20] and Geoffrion [15] have developed other logical aspects 

of decomposition that are relevant here. 

Decomposition of constrained optimization problems under uncertainty 

is a difficult problem and the literature on the subject is small. One 

excellent attempt related to Everett's work on constrained problems is 

in Mitchell [21J. A different approach that uses dynamic and linear 

programming for problems under uncertainty is by Wilson [29 J. 

The present work is a continuation of a joint research project by 

the author and D. W. Boyd on decentralization of resource allocation 

problems. The results of that research project are reported in Boyd 

and Cazalet [6][ 7]. The dissertation of Boyd [5 ] develops a metho­

dology that uses decomposition to assist in the assessment of complex 

preferences in decision problems that do not have a direct means for 

economic valuation. 

The dissertation of Helms [17] develops an approach to decomposition 

of unconstrained problems from a different point of view. However, 

Helms does not explicitly treat uncertainty in his work. 
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The literature on electrical power system planning is of varying 

quality. The state-of-the-art is essentially summarized in Nelson [23], 

Berrie [ 4 ], and Turvey [28]. The power system problem examined in 

this dissertation is based on an analysis performed by the author and 

his colleagues in the Decision Analysis Group at Stanford Research 

/ 
Institute [10][13]. The analysis was done for the Comision Federal de 

Electricidad and it concerned the capacity expansion of the Mexican 

electrical system with particular emphasis on nuclear power plants. 

1.6 Contributions to Decision Analysis 

strategic planning problems provide a unique challenge to management 

scientists. Decision analysis+ is one discipline that has addressed 

itself to the logical solution of complex problems where significant 

resources are involved. It has well developed quantitative tools for 

the analysis of the one-shot, single project types of decisions. However, 

in the area of multiple project, repetitive decisions,i satisfactory 

computational methods have not yet been developed. 

In other disciplines, the powerful techniques provided by mathe-

matical programming have proved to be popular. Linear programming, 

for example, provides an extremely powerful tool for the analysis of 

problems that can be structured within its assumptions. But, decision 

analysts generally have been unable to put the techniques of mathematical 

programming to work. One of the difficulties is that mathematical 

+ Introductions to decision analysis are in Howard [18], North [29] 
and Raiffa [26]. 

i For a definition of multi-project selection decisions and a 
hensive review and critical analysis of the literature on the 
see Boyd and Matheson [ 8 ]. 
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programming under uncertainty is still not fully developed. Another 

reason is that decision analysts typically do not formulate problems 

in terms of the constrained models that mathematical programming specifi­

cally addresses itself to. 

The results of this dissertation are useful in the decision analysis 

of multiple project, repetitive decisions. The powerful concepts 

of iteration and decomposition inherent in most mathematical programming 

techniques are brought to bear on these difficult decision problems. 

The new computational methods and ways of structuring problems apply 

to decision problems that are best solved on a centralized basis. 

Often the differences between the methods developed in this disser­

tation and the methods of mathematical programming and elementary calculus 

are subtle. In the simplest problems the differences between constrained 

and unconstrained formulations of decision problems are often a matter 

of philosophy and only rarely do they significantly affect the difficulty 

of an analysis. In the more interesting problems, where nonlinearity, 

uncertainty, dynamic effects) and complex preferences are present, the 

advantages of the methods discussed in this dissertation become evident. 

Electrical power system planning is an example of a multiple project, 

repetitive decision problem. In this dissertation we develop decomposition 

techniques for a general class of problems and then apply the techniques 

to electrical power system planning. We demonstrate that every important 

aspect of this problem can be treated in a practical way. This successful 

application is strong evidence that the methods developed in this disser­

tation can provide practical tools for the decision analysis of multiple 

project,repetitive decision problems. 
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CHAPTER II 

MATHEMATICAL FOUNDATIONS OF DECOMPOSITION 

In this chapter we develop the mathematical foundations of a 

methodology for solving unconstrained optimization problems by decom­

position. The mathematical foundations are developed using a series 

of increasingly complicated examples. These examples do not apply 

directly to any particular problem; rather, they are suggestive of 

ways to structure actual problems. 

The examples focus on the resources allocated in a decision 

problem. The first example treats problems with a single resource 

to be allocated among a number of projects. It is assumed that the 

resources are purchased in a market where the price of the resource 

is a function of the amount purchased. This formulation of the problem 

should be contrasted with the more usual constrained formulation ,vhich 

limits the amount of resources available. 

The second example in this chapter extends the results of the 

first example to problems with multiple resources. The third example 

treats problems with very general objective functions. Both the second 

and third examples are applicable to problems over time. The development 

of the mathematical foundations for decomposition under uncertainty is 

postponed until Chapter IV. 

For each of the examples we prove an optimality theorem, derive 

bounds on the optimal solution and present two search algorithms. 

Essentially, all of the basic ideas are introduced in the discussion 

of the first example. 
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2.1 Single Resource Problems with Separable Objective Functions 

The mathematical ideas developed in this section apply to the 

following class of problems: 

1. The relationship between a given resource allocation and the 

eventual outcome is known with certainty. 

2. The objective of the problem can be interpreted as maximizing 

profit where profit is separable into a term representing 

the total project returns and a term representing the cost 

of a single resource. 

3. The cost term depends only on the total amount of a single 

resource allocated among the projects. 

The resources, revenues, costs, and profits should be flexibly 

interpreted. For example, a resource can be a service, a commodity, 

or something less tangible. 

The Example 

Consider the problem of allocating a single resource among J 

projects. Let 

+ The symbol 

~ A negative 

x. :+ amount~ of the resource used by the jth project, 
J 

j == 1, . .. , J • 

":!I is read !lis defined as. !I 

value for x. indicates a net production of the resource. 
J 
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R(~) - total revenue from all projects as a function 

of the amount of the resource employed by each 

project. In general, 

J 
~ r. (x) 

. 1 J­
J= 

where r.(x) is the return assigned to the jth 
J -

project.+ 

y == total amount of the resource used by all J pro-

jects. 

y 

Thus 

J 
~ x. 

j=l J 

c(y) - total cost of the resource purchased in the resource 

market. 

The resource allocation problem is to choose an x to maximize the 

profi t function 

where x is chosen from the completely arbitrary set X. The set X 

can restrict the allocation x in any way. For example, the set X 

can restrict the resource to be available only in discrete units. Later 

in this section we will require both R(~) and X to have certain pro-

perties. 

+ At this point, the revenue assigned to the jth project can depend on 
the allocations to every project. t~ater we will make the assumption 
that the revenue assigned to the j project is independent of the 
revenue assigned to the other projects. This assumption is not required 
now. 
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Many optimization techni~ues are applicable to the type of problem 

described above. The techni~ues range from an exhaustive search over 

all elements of the space X to sophisticated nonlinear programming 

techni~ues. The more powerful techni~ues utilize certain special 

characteristics of a problem to guide a search for the optimum and to 

guarantee that the result is the optimal resource allocation. 

When the number of projects in the example resource allocation 

problem is large, the problem is more difficult to solve. For example, 

a problem with only 10 possible resource allocations to each project 

results in an overall problem with 103 possible resource allocations. 

In this section we develop methods for solving problems with large 

numbers of projects. 

statement and Proof of Theorem I 

There are two important tasks in the design of optimization methods. 

One task is to develop methods for recognizing the optimal solution 

once it is found. The other task is to design efficient methods for 

finding the optimal allocation. The following theorem relates to the 

first task. The theorem is useful because it provides a method for 

testing whether a given resource allocation is optimum. 

THEOREM 1:+ * If x maximizes 

3 
L: x. 

j=l J 

+ Some of the history behind this theorem is reviewed in the discussion 
of constrained and unconstrained problem formulations later in this 
section. 
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* over all x E X, and if y maximizes 

over all y, and if 

* then x maximizes 

over all X E X.+ 

Proof: 

A;y - C(y) 

J * :6 x. 
. 1 J J= 

-)(­

y 

R(:!:~) - C (y) 

a) The theorem statement implies the following two ine~ualities: 

J -AI.. J -3{-

R(~) - /I. 6 x. :s. R(~ ) - /I. L x. 
j=l J j=l J 

holds for all x E X, and -

C(y) * -)(-

A;y - < A;y - C(y ) 

holds for all y. 

b) Combining ine~ualities (1) and (2) gives 

(1) 

(2) 

J * J -)(_ * -)(_ 
R(~) - /I. b x. + A;y - C(y) :s. R(~ ) - /I. L x. + A;y - C(y ) (3) 

. 1 J . 1 J J= J= 

w·hich holds for all x E X and all y. 

c) Since (3) holds for all y it must also holds for y 
J 

= L x. 
j=l J 

+ The statement X E X is read "x is an element of the set X." 
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where x E X. In this case the terms involving A on the left side 

of (3) cancel, and 

holds for all x E X. 

d) BY the statement of the theorem 

* y = 
-)(­

x. 
J 

Thus, the terms involving A on the right side of (4) cancel and 

J -x-( \\ ) - C . l x. 
L..I J 

j=l 

holds for all x E X. Hence the theorem is proved. 

Discussion of Theorem I 

(4 ) 

Theorem I can be viewed as a test to be applied to a trial resource 

allocation. If the trial resource allocation simultaneously maximizes 
J 

both R(x) - A ~ x. over all x E X and Ay - C(y) over all y, 
- . I J 

J= 
then the trial allocation is guaranteed to be the globally optimal 

allocation. However, if the trial allocation fails the test provided 

by the theorem then we cannot say definitely that the trial solution 

is not optimum. Stated differently, Theorem I provides only sufficient 

conditions for an optimum. Thus, in a sense Theorem I provides a 

"fail-safe" test since it never indicates a trial allocation is optimum 

when there is a better allocation possible. 

The functions R(~) and C(y) are completely arbitrary (except 
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they must be real-valued). The set X is also completely arbitrary. 

Thus, Theorem I is valid for an extremely large class of problems 

including discrete, nonlinear problems. 

We can get a considerable amount of insight into Theorem I by 

studying its application graphically. An application of the theorem 

is illustrated in Figure 2.1. The horizontal axis of the figure is 

the total consumption of the resource by all J projects. The vertical 

axis is the total revenue from all J projects. Each of the points 

in Figure 2.1 represents a particular allocation of resources. 

The resource cost function is also plotted in Figure 2.1. The 

vertical axis of the figure represents total cost when we refer to the 

resource cost function. Since the profit obtained from a given policy 

is just revenue less cost, the vertical distance between a policy and 

the resource cost function in Figure 2.1 is the overall profit of that 

policy. The resource cost function shovm in Figure 2.1 happens to 

be convex.+ 

The maximization of 
J 
L x. 

j=l J 
required in Theorem I can 

be interpreted graphically. Consider a hyperplane of slope ~. In 

Figure 2.1 this hyperplane is a straight line of slope ~. Now, lower 

this hyperplane until it touches a policy in the revenue-resource space. 

The first policy touched by the hyperplane of slope ~, maximizes 

J 
where y = B 

j=l 
x .. 

J 
Call this policy * x 

+ A function is convex if the function always lies below or on a line 
drawn between any two points on the graph of the function, i.e., 
c(y) ~ aC(Yl) + (1~)c(Y2) where 0 < a < 1. A function is strictly 
convex if the inequality holds in the strict sense. A function is 
(strictly) concave if the negative of the function is (strictly) convex. 
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Figure 2.2: AN EXAMPLE WHERE THE CONDITIONS OF THEOREM I ARE SATISFIED 

22 



By a similar operation we can determine the total amount of the 

resource re~uired to maximize Ay - C(y), or, e~uivalently, to minimize 

c(y) - Ay. To minimize C(y) - Ay we raise a hyperplane of slope ~ 

until it touches a point on the resource cost function. The amount 

of resources re~uired at that point is the amount that maximizes 

~y - C(y). 

* The statement of Theorem I says that if the x that maximizes 

J 
R(~) - ~ ..6 x. also maximizes ~y - C(y) where y 

j=l J 

* 

J 
6' x. then 

j=l J 

x is the optimal allocation. In Figure 2.1 the conditions of the 

theorem are not satisfied because the parallel hyperplanes do not 

generate the same total resource allocation. However, in Figure 2.2 

the conditions of the theorem are obviously satisfied. The key to a 

successful application of Theorem I is to choose the correct value for 

~. We vlill discuss a number of methods for adjusting ~ later in this 

section. 

Several graphical applications of Theorem I are presented in 

Figure 2.3. Some of the examples illustrate cases where the theorem 

guarantees an optimum if the correct ~ can be found. The other 

examples illustrate cases where the theorem cannot guarantee that any 

of the solutions is the optimal solution, regardless of the slope of 

the hyperplane employed. 

All of the examples in Figure 2.3 illustrate the application of 

Theorem I to problems with continuous revenue and cost functions. 

The total revenue is defined in each case as 
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R(x) max R(~) 
XEX 

J 
subject to B x. 

j=l J 
x 

so that we can use a two-dimensional presentation. 

Example a) in Figure 2.3 illustrates a case where the total revenue 

function is concave and the cost function is convex. The solution 

determined by the parallel hyperplanes satisfies the conditions of 

Theorem I 

Example b) illustrates a case where the theorem cannot guarantee 

the optimality of a policy even though an optimal policy obviously 

exists. The difficulty arises because the optimal policy lies in a 

When the maximum of R(x) is determined by lowering a hyperplane 

it is not possible for the hyperplane to reach into the gap in the total 

revenue function. 

Gaps in the total revenue function exist only when the total 

revenue function is not concave. Nevertheless, Theorem I is still 

useful in problems with non-concave total revenue functions, if the 

optimal policy is not in a gap. Example c) illustrates a case where 

the theorem is able to guarantee the optimality of a policy even though 

R(X) is non-concave. 

Example d) in Figure 2.3 demonstrates that gaps also can exist 

in the cost function if it is non-concave. Again, Theorem I will 

guarantee the optimality of a policy only if the policy does not lie 

+ A gap is a well-defined term in the literature on mathematical pro­
gramming. A paper by Everett [12] popularized the term. We will 
discuss methods of resolving gaps in the subsection on penalty functions. 
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in a gap. When the optimal policy lies in a gap Theorem I simply has 

nothing to say. In such cases the analyst is forced to use other 

techniques including the extensions of Theorem I discussed later in 

this section. 

Constrained and Unconstrained Problem Formulations 

The relationship between constrained and unconstrained formulations 

of a problem is central to the problem of developing a methodology for 

formulating and solving complex problems. We must, however, be careful 

in our discussion of this topic, because the adjectives "unconstrained" 

and "constrained" never completely describe a given problem formulation. 

In discussing constrained and unconstrained problem formulations 

there are two important points to consider. 

The first point concerns how well a model describes the decision 

maker's view of his problem. If there is an overwhelming physical 

or economic reason why a particular variable in a problem should be 

restricted then a constraint on that variable is a good modeling approxi­

mation. On the other hand, if a variable is constrained for analytical 

reasons then it is important to test the sensitivity of the ultimate 

decision to the level of the constraint. Lagrange multipliers are 

particularly useful in this regard. 

The second point concerns the difficulty of the analytical problem. 

A constrained problem formulation eliminates the need for detailed 

modeling of certain features of the problem. In the simple example 

used in this section a constraint on the amount of the resource available 

would eliminate the need for a model of the resource market. Another 
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apparent advantage of constrained problems is that mathematical pro­

gramming techniques for constrained problems are fairly well developed. 

The advantages of a generally unconstrained formulation of a 

problem are particularly important in strategic decision problems. In 

strategic decision problems the only realistic constraints are "physical 

constraints." Physical constraints, for example, are the number of 

hours in a day or the availability of a resource in discrete amounts. 

Constrained formultions of problems tend to be least realistic 

when time, uncertainty and multiple outcomes must be explicitly treated. 

Very often an analyst will attempt to avoid the hard analysis required 

to construct a preference model for these situations. Instead he will 

use constraints to eliminate some outcomes from consideration. The 

result is that a clear understanding of the preferences of the decision 

maker is avoided, but often at the expense of not satisfying the decision 

maker. 

Advances in the theory of preference models and more experience 

in the construction of resource cost models will make the use of uncon­

strained models of decision problems less difficult. One of the objec­

tives of this dissertation is to develop additional optimization methods 

for unconstrained problems. 

At the theoretical level, optimization techniques for constrained 

and unconstrained problems are strongly related. A good example is 

the classical method of Lagrange multipliers which transforms a con­

strained optimization problem into a series of unconstrained problems. 

This approach is particularly well-expressed in Everett [12J where he 

illustrates how a hard problem can sometimes be decomposed by using 

Lagrange multipliers. 
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It is interesting to compare Everett's main theorem with Theorem I. 

Consider the following constrained optimization problem which is mathe-

matically identical to our single resource market problem: 

max R(~) - C(y) 
~EX,y 

subject to x. - Y 
J 

= 0 . 

The constraint can be eliminated by defining a single Lagrange multiplier 

and formulating the Lagrangian as follows: 

For 

of 

J 

J 
R(~) - C(y) - "A.[:6 x. - yJ . 

. 1 J J= 

this problem, Everett's main theorem states: if, for 

* * L(~,y,"A.), "A., the quantities x and y maximize 

* -If-
x. - y = 0, then x , y is the optimal allocation. 

J -

Theorem I is a restatement of Everett's main theorem.+ 

some value 

and if 

Clearly, 

The essential difference betliTeen Everett's theorem and Theorem I 

is that Theorem I is expressed in a form that is more natural to uncon-

strained problems than is Everett's theorem. This rather subtle difference 

between the two theorems will become crucial when we extend Theorem I to 

more complicated situations. The unconstrained approach embodied in 

Theorem I will allow us, in later sections, to treat problems with 

multiple objectives, time dependence, uncertainty and complex technical 

+ Actually Everett's theorem is more general since it allows inequality 
constraints at the expense of requiring the Lagrange multiplier to be 
positive. In the present context, only equality constraints are relevant. 
Thus negative Lagrange multipliers are permissible here. 
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interactions between projects. These problems have not been solved 

satisfactorily by constrained methods. 

In this dissertation we sometimes find it useful to study constrained 

problems for the insight they provide and most importantly for the mathe­

matical techniques that have been developed for constrained optimization 

problems. Some of the algorithms and most of the basic mathematical 

tools used in this dissertation were originally developed for constrained 

problems. Another reason for studying constrained problems is that 

there may be portions of some strategic decision problems that involve 

physical constraints. 

Search Methods 

As mentioned earlier, the first task in the design of optimization 

methods is to develop an optimality test. For our simple example, 

Theorem I provides such a test. The second task is to design efficient 

methods for finding the optimal solution. Generally a search method 

is expressed in the form of an algorithm. 

An algorithm is a detailed set of instructions for moving from 

one solution to another with the objective of quickly converging on 

the optimal solution. In this dissertation we take a flexible approach 

towards the design of algorithms. We will outline a number of algorithms 

and discuss their specific features. In practice, however, the analyst 

will normally consider a variety of algorithms to solve a given problem. 

More than one algorithm may be used in the solution of a single problem. 

Fortunately, the optimality test provided by Theorem I is independent 

of the method used to find the optimal solution. 
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Bounds 

Upper and lower bounds on the optimal profit of a resource allo-

cation problem are useful aids in searching for the optimal allocation. 

If the upper and lower bounds are sufficiently close at a particular 

stage in a search then the search can be discontinued and the present 

solution can be taken as optimal "for all practical purposes." 

Bounds are also useful in another way. If a solution lies in a 

gap, then Theorem I cannot guarantee the optimality of the solution. 

However, if a solution can be obtained that is sufficiently close to 

the upper bound on profit, then there is no need to probe the gap for 

a better solution. 

The method of bounding the profit is illustrated in Figure 2.4. 

Let Xl be the resource allocation that maximizes 

over all x E X. Then a lower bound on the optimal profit is given by 

£ (J 
p == R (~I) - C L; 

j==l 

\ 
x~ 

J / 

which is just the profit resulting from the allocation Xl. 

NOW, let yl be the amount of resources required to maximize 

r..y - C(y) 

over all y. An upper bound on the optimal profit is given by 

u 
p 

J 
R(~') - C(yl) + r..[YI - 2 x:] 

. I J J== 
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At each stage in a search the relevant lower bound is the greatest 

lower bound obtained so far. Similarly, the relevant upper bound is 

the smallest upper bound obtained so far. At the optimal allocation, 

e u p p. 

The proof that 
u 

p is an upper bound follows directly from the 

proof of Theorem I. Ine~uality (4) in the proof of the theorem can 

be rewritten in the form, 

J J 
R (~) - C (r x.) :: R (~ !) - C (y !) + "A. [y! - . b xJ~ ] 

j=l J J=l 

which holds for all x E X. The term on the right side is the upper 

bound on the optimal profit. 

In some problems it is possible to obtain tighter bounds that 

depend on the particular structure of the problem. One such alternative 

method is developed in Boyd and Cazalet [ 6 ]. 

Successive Approximations Algorithm 

The first formal algorithm we will investigate is called the 

successive approximations algorithm [6 J. The algorithm is named 

for its similarity to the method of solving sets of e~uations by the 

classical method of successive approximations. 

SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Guess an initial "A.,"A.
0 or start with a trial total 

allocation at Step 3. 
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2. 

3. 

4. 

Maximize 

J 
R(~) _ An 6 x. 

j==l J 

over all x E X. Call the result n + x. 

Calculate An+l according to the relationship 

A,n+l == ~ C(y) 
dy 

y 
J 

L 
j==l 

n x. 
J 

C(y) must be convex in this algorithm. 

If 
n+l 

A equals then the conditions of Theorem I 

are satisfied, and n 
x is equal to the optimal 

allocation. otherwise, return to step 2 using n+l A . 

The successive approximations algorithm requires that C(y) be 

convex and differentiable. Under these assumptions step 3 is equivalent 

to finding a A such that AY - C(y) is maximized over all y at 

y = 
J 
';-"\ n 
f x 

t: .. ...! j' 
j=l 

steps 2 and 3 and the condition in Step 4 that successive 

A'S be equal, combine to satisfy the conditions of Theorem I. 

Bounds on the optimal profit can be computed at each stage of 

the successive approximations algOrithm.~ In terms of the notation 

used to define bounds in the previous subsection, A is equivalent 

+ The superscripts on An and xn are an index to the numbe~ Qf iter­
ations. We could have used the rather cumber9041e notation A,n), for 
example. However, the distinction between A"n) and A raised to the 
nth power will always be clear from the context of the application. 

~ A relaxation version of the successive approximations algorithm is 
described later in this subsection. With a relaxation coefficient not 
equal to unity, the calculation of an upper bound is not as direct. 
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to 
n 

/I. , X' is eCluivalent to 
n 
~ , and y' 

J 
is eCluivalent to ~ 

j=l 

n-l x. 
J 

An upper bound on profit cannot be computed until the second iteration 

of the successive approximations algorithm. The bounds reCluire essen-

tially no additional computational effort. 

The statement of the successive approximations algorithm provides 

an economic interpretation of the term /I.. In step 3, /I. is given by 

d 
dy C(y) 

y 
J 

L 
j=l 

n x. 
J 

In this case, /I. is the marginal cost of the resource at the operating 

J 
point y 

n 
x.' 

J 
If the project revenue functions are differentiable 

then, at the optimum, marginal revenue is eClual to marginal cost. 

The economic interpretation of /I. as a marginal cost reveals 

the con..nection betvJeen the methods discussed here and the methods of 

marginal cost pricing that have long been popular in economics [23], 

[28]. However, the methods discussed here do not reCluire the revenue 

functions to be differentiable. In many of the algorithms that we 

shall propose the cost function C(y) need not be differentiable. 

Hence, we will usually refer to /I. as a "price" rather than a marginal 

cost. Further economic interpretations are discussed later in this 

section. 

We will not study the convergence of algorithms in detail. This 

does not imply that convergence is always easy to obtain in the algorithms 

that we will use. More theoretical study of the algorithms would have 

practical value in that it provides insight for designing algorithms. 



Fortunately, in the class of strategic decision problems treated in 

this dissertation it is relatively easy for the analyst to interact 

with the computer to facilitate fast convergence. Thus, the analyst 

can modify algorithms or choose a new algorithm as the problem is 

being solved. 

The mathematical study of convergence generally re~uires overly 

strict assumptions that, in practice, are not always re~uired for fast 

convergence. In order to say something in general about convergence 

of an algorithm it is usually necessary to make some statements about 

the continuity of the functions. Since many practical examples involve 

discrete functions, the study of convergence might provide insight for 

discrete problems but would not be directly applicable. The convergence 

of the successive approximations algorithm is considered in Boyd and 

Cazalet [ 6 ] and again in Boyd [ 5 J. 

One approach towards improving convergence of the successive 

approximations algoritJ:1m is to introduce a "relaxation coefficient." 

Let An be the price of the resource determined on the previous iter­

ation. The new price 

An +l 

where 0 < ex < 1. 

n+l 
A is given by 

ex ~ C(y) J 
y B 

j=l 

n 
x. 

J 

+ (l-ex)An 

This calculation replaces Step 3 of the successive approximations 

algorithm. For ex e~ual to unity the algorithm is as before. For 

ex less than unity the algorithm will converge more ~uickly in situations 

where successive solutions tend to oscillate about the optimal solution. 
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A disadvantage in using a relaxation coefficient in the successive 

approximations algorithm is that an upper bound is more difficult to 

determine. Practically, one must first perform step 2 of the next 

iteration with a equal to unity in order to compute the current bound 

and then repeat step 2 with a less than unity. 

Price Directive Gradient Algorithm 

Our second formal algorithm is in some ways more sophisticated 

than the successive approximations algorithm. The price directive 

gradient algorithm attempts to minimize the upper bound on profit by 

intelligent choices of successive values for ~. 

We have already shown that 

-u 
p R(~') - C(y!) + ~Iy' 

J 
- lj X!] 

. 1 J J== 

provides an upper bound on the optimal profit. The rate of change 

(gradient) of the upper bound vIi th respect to ~ is given by 

dpu 
Y' -d~ == 

J 
:L x! 

j==l J 

Economically, the result says that the rate of change of the upper 

bound is just equal to the excess supply of the resource. 

If we view our resource allocation problem as the problem of 

minimizing the upper bound u p then it is reasonable to move in 

the direction of the gradient of u 
P with respect to ~. This obser-

vation suggests the following rule: 

l. If the excess supply is positive, then decrease ~. 

2. If the excess supply is negative, then increase ~. 



We can state this rule algebraically as follOWS:+ 

where 

mizes 

n+l 
A 

a == an appropriately chosen positive constant. 

An == price of the th iteration. resource on n 

An+l ==price of resource on n + 1
st 

iteration. 

n 
==y' the 

th 
iteration. y on n 

n ==x'. the th iteration. x. on n 
J J 

One way of choosing the constant a is to use the a that mini-

u p in the direction of the gradient. In practice, however, 

the analyst would usually adjust a on the basis of a number of intuitive 

inputs. In multiple resource market problems the direction information 

provided by the gradient is particularly valuable. 

The price directive gradient algoritllin can be summarized as follows: 

PRICE DIRECTIVE GRADIENT ALGORITHM: 

1. Guess an initial price AO. 

2. Maximize 

J 
R(~) 

n L; - A x. 
j=l J 

over all x E X. Call the result 

3. MaximiZe 

over all y. 

Ay - C(y) 

Call the result n y. 

n x 

+ The symbol a used in this subsection is not to be confused with the 
relaxation coefficient described in the previous SUbsection. 
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J 
4. If b n 

x. n y , then the conditions of Theorem I 
j=l J 

are satisfied and n 
x * is equal to ~, the optimal 

allocation. Otherwise, compute a new value of ~ 

according to 

and return to step 2. 

Convergence of the price directive algorithm depends on the constant 

a. For small values of a, the convergence of the algorithm tends to 

be slower but more certain. In problems where convergence is difficult 

to achieve, a smaller a will often provide convergence. 

Mathematically, this algorithm is identical to the price directive 

algorithm for constrained problems. The name of the algorithm follows 

Geoffrion [15J. The algoritlnn is extensively studied in Arrow and Hurwicz 

[ 2], and Lasdon [20 J. They show that the algorithm will converge for 

sufficiently small values of the constant a, if the revenue function 

is concave and the cost function is convex and either of these conditions 

hold in the strict sense. 

There is, however, an important difference between the unconstrained 

version of the algorithm presented here and the constrained version 

studied in the references. In the constrained version of the algorithm 

it is mathematically impossible to implement the intermediate solutions 

obtained by the algorithm. In a constrained formulation of a problem, 

only the optimal solution is (primal) feasible. 

In the unconstrained version of the price directive algorithm 
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intermediate solutions can always be implemented because the resource 

market can absorb the excess supply or demand for the resource. Further-

more, the intermediate solutions provide a lower bound on the optimal 

profit that is not available in the constrained version. The importance 

of the differences between these two versions of this algorithm will 

become clearer in later sections of this dissertation. 

Decomposition 

The computational costs associated with the proposed algorithms 

depend on the difficulty of the optimization problems that are imbedded 

in the algorithms. The imbedded optimization problems can be as difficult 

as the original problem when completely arbitrary project revenue and 

resource cost functions are assumed. The computational advantages of 

the methods proposed in this section arise only when the problem has 

certain special structure. In many cases this special structure is so 

valuable that it is worthvJhile to reformulate a model to obtain the 

computational advantages associated with the special structure. 

In step 2 of each of the algorithms the following optimization 

problem must be solved: 

maximize 
x E X 

x .. 
J 

The solution of this problem re~uires, in general, a J-dimensional 

search. Thus, this problem is nearly as difficult as the original 

problem. Furthermore, this problem usually needs to be solved a number 

of times before the optimal allocation is determined. 
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Now, consider the case where the revenue from each project is 

independent of the amount of resource allocated to all other projects. 

With such independent projects, 

where 

J 
l) r. (x.) 
. 1 J J J= 

r. (x.) _ revenue from j th project as a function of the 
J J 

amount of resource allocated to that project. 

Furthermore, suppose that the set X describing the alternatives can 

be partitioned into the product set formed by 

where X. E X. 
J J 

and x. f- Xl 
J ~ 

for k f. j. This second assumption 

implies that the allocation of resources to the jth project in no way 

affects the alternatives available to the kth project lilhen k f. j. 

By employing the two assumptions stated above, the J-dimensional 

optimization problem in step 2 of the algorithms becomes J one-dimen-

sional problems, i.e., 

max R(~) - A. 
XEX 

J 
)' 
LI x. 

j=l J 
r(x.) - A.x.] • 

J J 

Thus, we say the problem decomposes when a price is defined on the 

resource and the projects are completely independent except for the 

interactions caused by the resource market. 

The computational advantages of decomposition can be very important 

in large problems. Since the difficulty of a search increases approximately 
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exponentially with the dimensionality of the problem it is often much 

easier to solve many single-dimensional problems several times rather 

than solve one, mUlti-dimensional problem. 

In problems where the projects are not obviously independent, a 

useful approach is to try to identify the cause of the interrelationship. 

Many times, the interactions between projects can be modeled, at least 

approximately, in terms of a co®non resource and a market for that 

resource. The electrical power system problem in Chapter III is a 

good illustration of decomposition methods in problems with complex 

interactions. 

Organizational Interpretation of Decomposition 

Decomposition is a computational tool for solving decision problems 

that can be treated on a centralized basis. For example, a company in 

which all decisions are made by a single individual or group would have 

problems of this type. 

A decentralized organization is one where the decisions are delegated 

to many individuals or groups. Generally the independent decisions made 

by this organization must be coordinated in some way. 

In this section we will interpret our results on decomposition 

in terms of a hypothetical decentralized organization. The interpre-

tation provides both insight into decomposition and concepts that are 

useful in the design of decentralized organizations.+ 

The basic decentralized organizational structure used in this 

+ Decentralization is discussed extensively in Arrow [2 ], Boyd and 
Cazalet [ 6 ], and Morris [21]. 
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dissertation is illustrated in Figure 2.5. In this hypothetical organi-

zation there are three types of positions. 

At the top of Figure 2.5 we have identified an impresario who is 

in some sense tTrunning the show. tT More precisely, he is responsible 

for defining the structure of the organization and for defining the 

responsibilities of the other members of the organization. 

On the left side of Figure 2.5 we have identified several entre-

preneurs. Generally, the entrepreneurs are directly responsible for 

employing resources in the productive activities that the organization 

is organized to perform. 

Finally, a resource manager is shown on the right side of Figure 

2.5. The resource manager is responsible for satisfying the entrepreneurs 

re~uests for scarce resources or disposing of abundant resources. In 

more complicated situations there will be several resource managers; 

one for each resouxce. 

This general organizational structure is applicable to a vride 

variety of situations. One example in a corporate context interprets 

the impresario as the company president, the entrepreneurs as division 

managers, and the financial vice-president as one of the resource managers. 

The same general structure can be applied at other levels in a corporation. 

In a governmental organization, we might interpret the impresario as 

the governor of a state or the president of a country. The entrepreneurs 

might be lower-level decision makers or even independent citizens whose 

decisions interact through common resources. The resource manager might 

represent a public institution charged with the responsibility for the 

management of a scarce natural resource. 
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We can interpret our single resource example in terms of the general 

decentralized organization that was illustrated in Figure 2.5. In this 

case, the entrepreneurs are project managers responsible for deciding 

on the amount of a resource to use in their project. Given the price 

of the resource, each project manager independently maximizes 1!profit1! 

according to 

max [ r . (x .) - AX. ] 
X.EX. J J J 

J J 

where AXj is the 1!penalty1! paid for the use of the resource. 

The resource manager!s task depends on the algorithm chosen by 

the impresario or possibly by the resource manager himself. 

For example, the successive approximations algorithm instructs 

the resource manager to set the price of the resource equal to the 

marginal cost of the resource. 

With the price directive gradient algorithm, the resource manager 

acts more like a project manager. Independently of the project managers, 

he maximizes 1!profit" according to 

max[A.Y - C(y) ] 
Y 

where A.y is the 1!penalty1! he receives from the entrepreneurs. The 

price of the resource on the next iteration depends on the 1!excess 

supply" of the resource. The excess supply is the difference between 

the resource manager!s purchase of the resource in the resource market 

and the total requirements of the project managers. The price of the 

resource, in this case, could be set by either the impresario or the 

resource manager. 
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It is tempting to evaluate the performance of the project managers 

on the basis of their ttprofit,tt 

* * r.(x.) - /I:X .• 
J J J 

However, the distribution of the cost of the resource among the project 

managers is rather arbitrary. The arbitrariness of the distribution 

of resource cost will become more obvious in the discussion of penalty 

functions following later in this section. The appropriate basis on 

which to evaluate a manager!s performance is the quality of his decisions 

rather than on the magnitude of his profits. In a highly interactive 

situation, a project manager!s profit depends largely on factors beyond 

his control. 

An Alternative Development of Decomposition 

In this sUbsection lye develop some of the results of the previous sub-

sections under the assumption of differentiability. This alternative 

development is interesting because it relates the results of this 

dissertation to the optimization methods provided by calculus. However, 

in practical terms, the development is useful because it provides an 

approach to identifying resources and prices in very complex problems 

where unaided intuition is often misleading. 

We recall that our simple resource allocation problem can be written 

as 

maXimize! ~ 
~ E X j==l 

r. (x.) - C (~ x.) 1 
J J j==l J 



if we assume that the revenue function is separable. For simplicity, 

we will examine the problem without constraints, although some simple 

constraints such as positivity constraints (~~ 0) could be treated 

easily. The necessary conditions+ for * x to be a maximum for this 

problem are 

~ r.(x.) I * ux. J J 
d - dx C(y) ::: 0 for j ::: 1, ... , J . 

J 
J x. 

J y 6 
j:::l 

* x. 
J 

These conditions are also sufficient if the function 

J J 
~. r. (x.) - C (I; x.) 

j:::l J J j:::l J 

* is concave. To determine the optimal allocation x we must solve 

the J simultaneous e~uations describing the necessary conditions. 

* The solution of the e~uations for x is made relatively easy 

if vle observe that the term 

d c;y C(y) 

y 
J 

j 

-x­
x. 

J 

is independent of the index j. Suppose we set this term to an initial 

value, ~O. Then the J simultaneous e~uations become J independent 

e~uations of the form 

d 
£ r.(x.) 

Xj J J n x. 
J 

each of which can be solved for 
n x .. 
J 

n 
- ~ ::: 0 

Having solved for 
n x we can 

+ Background material for the development can be found in most elementary 
texts on calculus such as Courant [11]. 
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calculate /I. 
n+l 

according to 

n+l d 
/I. 6Y C(y) J 

l) n y x. 
j=l J 

* n+l n n 
If /I. /I. , then x is equal to ~ , the optimal allocation. 

Obviously, the solution process just described is the successive approxi-

mations algorithm developed earlier in this section. In economic terms 

we are simply allocating resources so that marginal revenue equals 

marginal cost. 

An important insight is that the allocation 

equation 

~ r. (x.) I - /I. n = 0 ox. J J n 
J x. 

J 

is also satisfied by the solution to the problem, 

maximize fr . (x.) - /I. nx . 
x. L J J JJ 

J 

n 
x. 

J 
satisfying the 

under the assumptions made in this subsection. Thus, having defined 

the price /I., we can solve the original J-dimensional problem by 

solving J one-dimensional problems. Theorem I and the subsequent 

results based on that theorem demonstrate that this result is valid 

for a much larger class of problems than indicated by the assumptions 

in this subsection. 

A complete development of decomposition under the assumption of 

differentiability is in Boyd and Cazalet [6 J. 



A Method for Identifying Resources and Prices 

In complex problems it is often difficult to identify the appropriate 

resources on which to define prices. In problems where there are strong 

interactions between projects, decomposition can often be achieved by 

defining new resources or parameters to characterize the interactions. 

The resulting decomposition is most effective if the resources are 

chosen to minimize the number of resource markets. One looks for 

resources that have an additive relationship among projects so that a 

price defined on a single resource serves to coordinate many projects. 

A general approach towards identifying resources and prices is 

suggested by the methods of the previous subsection. The first step 

involves careful formulation of the problem as an unconstrained resource 

allocation problem. Next, we temporarily assume that all functions 

are differentiable and that they satisfy the appropriate concavity and 

convexity re~uirements. Then we differentiate the objective function 

with respect to each of the decision variables and set the result to 

zero. At this point we have a set of simultaneous e~uations describing 

the necessary conditions for an optimum. 

To iteratively solve this set of e~uations we can guess certain 

terms in these e~uations and then solve for the optimal allocation. 

The selection of which terms to guess is a creative process whose 

success depends upon the skill of the analyst. Finally, we formalize 

the solution in the form of an algorithm. The results of this disser­

tation justify the application of the solution methods to problems 

where the re~uired differentiability and convexity assumptions are 

not present. 
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Several examples of the application of this method of identifying 

resources and prices are contained in Boyd and Cazalet [ 6] and Boyd 

[ 5]. The decomposition of the electrical power system example in 

Chapter IV is a practical application of this method. 

The general idea of defining new resources to account for inter-

actions between projects is not original. In economics, the problem 

of interactions between decisions made in a market economy corresponds 

to interactions between our projects. Those interactions that are not 

appropriately priced by an economic market are called external or 

neighborhood effects. Although it is often overlooked, one way of 

accounting for these interactions is to define additional resources 

and then set prices on these resources.+ Sometimes a new market 

mechanism can be developed to set the price, or the price can be set 

by political means. Usually, legislation is required to enforce payment 

for these new resources. In a centralized resource allocation problem 

many of the practical difficulties inherent in defining new resources 

for an economy, are absent. 

Penalty Function Methods (Theorem I', Bounds, Algorithms and Discussion) 

We have previously observed that the term Ax
j 

in the project 

managers' problem 

maximize 
x. E X. 

J J 

r. (x.) - Ax. 
J J J 

can be viewed as the penalty paid for the use of the resource. In our 

+ Arrow [ 1] observes that externalities are simply a matter of the 
classification of resources. 



discussion thus far, the penalty is a linear function of the amount 

of the resource employed. In this sUbsection we investigate general 

penalty functions where the penalty may be a nonlinear function of 

the amount of resource employed. 

Nonlinear penalty functions are interesting for two reasons. 

First, the study of nonlinear penalty functions provides insight into 

linear penalty functions involving prices. Second, nonlinear penalty 

functions conceptually provide the means for resolving the problem 

of gaps. In practice, however, nonlinear penalty functions have limited 

value. The price of using nonlinear penalty functions is a reduction 

in the degree of decomposition. 

The following theorem provides the theoretical foundation for 

general penalty function methods. Theorem I is a special case of 

this theorem and both theorems apply to the single resource problem. 

7't 
THEOREM I': If x maximizes 

* over all x E X, and if l maximizes 

over all l' and if 

* then x maximizes 

J 
pel) - C ~ y. 

. 1 J J= 

+:- * 
xl' 
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J 
R(~) - C(~ x.) 

. 1 J J= 

over all x E X. 

Proof: a) The theorem statement implies the following two inequal-

ities: 

holds for all ~ E X, and 

holds for all y. 

b) Combining inequalities (1) and (2) gives 

vlhich holds for all x E X and all y. 

J 

(
r"' *) - C U y. 

. 1 J J= 

c) Since (3) holds for all y, it must also hold for y = ~ 

where x E X. In this case, the terms involving p() on the left 

side of (3) cancel and 

holds for all x E X. 

d) By the statement of the theorem, 

* * y = x 

Thus, the terms involving pC) on the right side of (4) cancel and 
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R(~) - C(.~ X
J
.) ::: R(~*) - C( ~ X~) 

J=l j=l J 

holds for all x E X. Hence the theorem is proved. 

This theorem is essentially Theorem I with 
J 

A r x. 
j=l J 

replaced 

by p(~). The theorem provides only sufficient conditions for an 

optimal allocation and does not require any assumptions on the form 

of the functions other than real-valuedness. 

Some insight into general penalty functions is provided by the 

graphical examples in Figure 2.6. As in Figure 2.3 we define 

R(x) max R(~) 
XEX 

subject to 
J r: x. 

j=l J 
x 

so that a two-dimensional presentation can be used. 

Consider Figure 2.6(a). A particular penalty function 

illustrated by the dotted line. The first maximization problem in 

Theorem I' is to maximize 

R(x) - p(x) 

where x must be chosen to satisfy the requirement that x E X. 

Graphically, the equivalent problem is to choose the allocation x 

that maximizes the vertical distance between R(x) and p(x). This 

* 

(5 ) 

is 

maximum occurs at x. The second maximization problem in Theorem I' 

is to maximize 

p(y) - c(y) 

+ This penalty function depends only on the total resources, y. 
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over all y. Graphically, we maximize the vertical distance between 

p(y) and C(y) in Figure 2.6(a). The optimal allocation for this 

* * * second subproblem is y. In this case y = x. Thus, all of the 

conditions of Theorem I' are satisfied and * x must be the optimal 

allocation. 

The problem illustrated in Figure 2.6(a) could not have been 

solved by linear penalty function methods. If p() were linear, 

then the dotted line would be straight. Under these conditions the 

solution to the first maximization problem cannot be the optimal solu-

tion to the overall problem. In a previous subsection we described 

this situation in terms of gaps. Figure 2.6(a) demonstrates that an 

appropriate choice of a penalty function can resolve the problem of 

gaps. 

Figure 2.6(b) illustrates a case where the conditions of Theorem It 

* * are not satisfied because x is not equal to y. In Figure 2.6(c) 

the application of the theorem is also unsuccessful. A successful 

application of the theorem to a discrete problem is illustrated in 

Figure 2.6(d). 

General penalty functions also provide bounds on the optimal 

profit during the course of an iterative search. The lower bound is 

given by the best available solution obtained in the course of the 

iterations. The upper bound is given by inequality (4) in the proof 

of Theorem I. The bounds are stated formally below. 

BOUNDS: 

Let x' maximize 
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over all x E X, and let ~' maximize 

J 
p(~) - C ( bY. ) 

. 1 J J= 

over all ~. Lower and upper bounds on the optimal profit are given 

by 

£ J) 
P = R(~') - C(~ x~ 

. 1 J J= 

u 
p 

J 
R(~') - c(B y~) + p(~I) - p(~,) 

j=l J 

The basic algorithms for linear penalty functions carryover to 

nonlinear penalty functions with minor changes. The successive approxi-

mations algorithm is as follows: 

SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Guess an initial penalty function pO() subject to the 

conditions discussed below. 

2. Maximize 

over all x E X. Call the result n x. 

3. Determine a new penalty function such that 

d 
c;y C(y) J 

Y = L; x~ 
. 1 J J= 
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4 If Pn+l(!) __ pn(!) • for all x E X, then, subject to the 

conditions discussed below, n 
x is equal to * !', the 

optimal allocation. Otherwise return to step 2 using p( )n+l. 

Linear penalty functions require that C() be convex and differ-

entiable if the structure of the successive approximations algorithm is 

to satisfy conditions of Theorem I. The conditions of Theorem II are 

satisfied for nonlinear penalty functions if the function 

J 
p(~) - C ( by. ) 

. 1 J J= 

is concave and differentiable. If this condition is met, then the J 

equations in step 3 of the algorithm provide necessary and sufficient 

conditions for 
n 

l to be the global solution to the following problem: 

For linear penalty 

J 
maximize pel) - c (I: y.) 

l j=l J 

functions the conditions are equivalent 

convexity and differentiability for C( ) . 

The conditions on p( ) and C( ) point out one of 

practical difficulties associated with penalty functions. 

to asswning 

the inherent 

In order to 

use penalty functions to probe gaps in a revenue function, the function 

p() must be convex. If the combined function 

J 
pel) - C (L Y.) 

. 1 J J= 

is to be concave, then, loosely speaking C() must be Jlmore convex lJ 
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than p(). It is not always easy to find penalty functions with the 

lfright degree of convexity." 

An alternative algorithm that satisfies the conditions of Theorem II 

without restrictive assumptions is the penalty directive gradient 

algorithm. This algorithm can only be described in terms of a para-

meterized set of penalty fUnctions. Let p( If) be a set of penalty 

fUnctions with parameters f = (~l' ... '~N)' The penalty directive 

gradient algorithm is as follows: 

PENALTY DIRECTIVE GRADIENT ALGORITHM: 

1. Guess an initial set of parameters fO. 

2. Maximize 

over all x E X. Call the result n 
x 

3. Maximize 

4. 

over all Y... Call the result 
n 

Y..' 

then the conditions of Theorem II are satisfied 

n * and x is e~ual to ~, the optimal solution. Otherwise, 

compute a new set of parameters according to 

~n+l 
m 

This algorithm can be derived by applying a gradient search to 

the problem of minimizing the upper bound. The upper bound is given by 
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The rate of change (gradient) of the upper bound with respect to the 

parameter ~m is given by 

The parameter adjustment formula in step 4 of the algorithm moves the 

vector of parameters in the direction of the gradient. In the case 

of linear penalty functions only a single parameter, the price A, is 

required. 

The practical application of penalty function methods involves 

compromises. From the point of view of decomposition, nonlinear penalty 

functions are less desirable than linear penalty functions. A degree 

of decomposition can be obtained by using separable penalty functions. 

For example, 

is separable over the set of projects. The penalty function p,(x,) 
J J 

involves only the amount of resource consumed by the jth project. Thus, 

given the penalty functions, the allocation decisions can be made 

independently. Unfortunately, the informational and computational 

costs associated with N nonlinear penalty functions are much greater 

than the costs associated with N linear penalty functions where only 

a single parameter is involved. 

The practical difficulties associated with penalty functions limit 

their usefulness. In problems where gaps are important, penalty functions 
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may provide a solution. Sometimes restructuring the problem or looking 

at the problem from a different point of view is superior to implementing 

nonlinear penalty functions. 

The subject of penalty functions is also considered in the liter­

ature on constrained optimization. The general idea is to replace 

constraints with penalty functions and then adjust the parameters of 

the penalty function until the original constraints are satisfied. 

The Lagrangian method described earlier in this section is recognized 

as a special case of penalty function methods. Fiacco and McCormick 

[14] provide a comprehensive treatment of penalty function methods in 

constrained problems. Bellmore, Greenberg and Jarvis [3 ] provide a 

clear discussion of penalty functions that includes a discussion of 

gaps. Arrow and Hurwicz [2 ] discuss penalty functions from the point 

of viev[ of economic theory. 

In constrained problems, penalty functions are useful because 

they convert constrained problems into a series of unconstrained opti­

mization problems. Often the unconstrained problem is easier to solve. 

Generally, decomposition is feasible only for linear penalty functions. 

In the class of problems treated in this dissertation, the problem 

is formulated as an unconstrained problem. Any computational benefits 

from penalty functions applied to unconstrained problems must result 

from decomposition. 

2.2 Multiple Resource Problems with Separable Objective Functions 

Generally, the results for single resource problems carryover 

directly to multiple resource problems. In this section we will restate 

the major results of Section 2.1 in terms of a multi-resource example. 
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The Example 

Consider the problem of allocating amounts of K resources among 

J projects. Let 

_ amount of the kth resource used by the jth project 

x. 
-J 

x 

R(~~) 

Yk 

-

-

-

-

-

where j = 1, .•. ,J and k = 1, ... , K. 

(xlk , , x
Jk

) , a vector. 

(Xjl, , X
jK

) , a vector.+ 

r xU' 
x12 ' , x

lK 

x21 ' x22 ' , x
2K a matrix. 

l X;l' xJ2 ' ... , x
JK 

total revenue from all projects as a function of the 

amount of each resource employed by each project. 

In general, 

J 
R(~) == 2) rj(xj ) 

j==l 

total amount of the th 
k resource used by 

projects. Thus 

J 
Yk == l:' x jk' k == 1, ... , K . 

j==l 

all J 

Y - (Yl ' ... ,yK), a vector. 

C(~) _ total cost of all resources purchased in the resource 

market. 

+ The distinction between x. and ~k will usually be implied by the 
context in which they are us~d in an equation. 
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The resource allocation problem is to choose an x to maximize 

where x is chosen from a completely arbitrary set X. 

Mathematical Results (Theorem II, Bounds, and Algorithms) 

* THEOREM II: If x maximizes 

* 
J 

over all x E X, and if Z.k ~ xjk' k = 1, ... , K maximizes 
j=l 

K 

I:: AkYk - C(z.) 
k=l 

-K-
over all z., then x maximizes 

over all x E X. 

The proof of this theorem is a straightforward extension of 

Theorem 1. 

BOUNDS: 

Let Xl maximize 

over all x E X and let z.' maximize 
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over all l' A lower and upper bound on the optimal profit are given 

by 

£ J J J) 
P == R(~') - c(1 x~l' 2j xJ~2' ... , l) x\ ' 

j==l J j==l j==l J 

and 

SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Guess an initial price vector, ~O == (~l' ... '~K) or start 

with a trial l in Step 3. 

2. Maximize 

over all x E X. Call the result 

3· Calculate 
n+l 
~ according to 

J ' 
Yk == b xjk 

j==l 

k==l, ... ,K 

k 

n 
x 

1, .•. , K • 

4. If ~n+l == ~n, then the conditions of Theorem II are satisfied 

n * and x is equal to ~, the optimal allocation. Otherwise, 

return to Step 2 using n+l 
~ . 

(Note: C(l) must be convex and differentiable for this algorithm.) 

62 



PRICE DIRECTIVE GRADIENT ALGORITHM: 

1. Guess an initial price vector, ~O 

2. Maximize 

over all x E X. Call the result 

3. Maximize 

over all y_: Call the result 
n 

Y... 

J 

n 
x 

4. If ~ xX:-k . 1 J J= 

for k = 1, ... , K, 

of Theorem II are satisfied and n 
x 

then the conditions 

is equal to the 

optimal allocation. Otherwise, compute 
n+l 

~ according to 

k 1, ..• , K 

(where a is an appropriately chosen constant) and return 

to step 2. 

Decomposition 

In Section 2.1, decomposition was possible when the projects and 

the set X had certain special structure. For multiple resources, 

decomposition of the project decisions is possible under the same 

conditions. The required conditions are that the projects be independent, 

J 
:B r. (x.) 

. 1 J-J 
J= 
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and 

where 

X. E X. and x. ~ X. for i f j . 
-J J -l J 

Under these conditions, step 2 of the algorithms becomes 

K 
max [r. (x.) - b f..kX 'k] . 

X.EX. J -J k=l J 
-J J 

In the general case, the resource market cost functions are dependent 

and decomposition of one resource market from another is not directly 

possible. When decomposition of the resource markets is not possible, 

the~, for example, step 3 of the price directive gradient algorithm 

involves a multi-dimensional search. Decomposition of the resource 

markets is possible when 

K 

C(~) ck(Yk) 

in which case step 3 of the price directive gradient algorithm involves 

only one-dimensional searches. Sometimes C(~) can be partially 

decomposed. If a complete decomposition is not directly possible, 

then it is often worthwhile to restructure the problem to permit 

further decomposition. 

Decision Variables 

In the present formulation of our examples we have focused on 

the resource allocation problem. In many problems, however, it is 

useful to focus on the decisions that control the allocation of 
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resources. In this subsection we will develop some notation that 

emphasizes the distinction between a decision and the eventual allo-

cation of resources that depend on that decision. This distinction 

is particularly important in problems involving time or uncertainty. 

Let 

e. - vector of decision variables (policy) associated with 
-J 

the jth project. The number of elements in e. 

x·k(e.) -
J -J 

need not be defined at this point. 

amount of the th k resource 

a function of e .. 
-J 

used by the 

-J 

.th project as J 

e - (e
1

, ... , e.), a matrix giving the decision policy 
- -J 

for the problem. 

e _ set of all possible policies. 

Using decision variables the resource allocation problem treated 

in this section becomes 

max [R(~) - C(l(~))] 
e E e 

J 
b x' l (e.) 
. I J:\:-J 
J= 

k = 1, ... , K . 

The total project revenue in the above formulation is now a function 

of the project decision variables. Decomposition among projects is 

possible when 

and 

J 
= '\ r.(e.) LI J-J 

j=l 

e =elx···xe J · 
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2.3 Problems with Arbitrary Objective Functions 

In this section we develop methods for treating resource allocation 

problems where the objective function does not easily separate into 

revenue and cost terms. In practical situations, arbitrary objective 

functions are often the result of multiple measures of performance.+ 

For example, monetary profit may not be the only consideration in 

evaluating a resource allocation. If the decision maker's value function 

is defined over a number of measures of performance or outcome variables, 

then the methods developed in this section are useful. 

The results of this section show that problems with arbitrary 

objective functions can be treated using methods similar to those 

developed for problems with separable objective functions in Sections 

2.1 and 2.2. The optimality theorem developed in this section provides 

the theoretical basis for transforming problems with arbitrary objective 

functions into problems with separable objective functions. 

A fundamental approach to problems vIi th complex preferences is 

in Boyd [ 5 J. He develops a methodology for assessing preferences in 

complicated situations. In this dissertation we simply intend to 

demonstrate that problems with arbitrary objective functions are con-

ceptuallY no more difficult than problems with separable objective 

functions. 

+ We use the term "arbitrary" rather than the term "nonseparable H to 
describe the objective function here because the methods of this section 
also apply to and provide insight to problems with separable objective 
functions as a trivial case. 
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Introduction to Ordinal Value Functions 

An ordinal value function is used to encode a decision maker's 

attitude towards the outcome of a deterministic resource allocation 

problem. An arbitrary objective function usually is the direct result 

of an ordinal value function or can be interpreted in terms of an 

ordinal value function. This subsection provides a nonrigorous intro­

duction to ordinal value functions as motivation for the theoretical 

study of decomposition under arbitrary objective functions. 

The preferences of a decision maker can be described in terms 

of the resources that can be identified in a problem. Only some of 

the resources in a complex problem are of direct concern to the decision 

maker. Resources can be classified as either primary or secondary 

resources. Primary resources are those resources directly consumed 

or valued by the decision maker. Secondary resources are resources 

that are indirectly valued because they are useful in producing primary 

resources. 

Ordinal value functions are defined on the primary resources of 

a problem. A useful graphical device in the study of ordinal value 

functions is the indifference curve. Indifference curves are isovalue 

curves defined on the space of primary resources. 

Figure 2.7 provides an elementary example of indifference curves. 

In this example the decision maker desires more of both resources Xl 

and Any two resource allocations lying on the same indifference 

curve are said to have "eQuivalent value" to the decision maker. 

Conceptually, indifference curves can be encoded by Questioning 

the decision maker. Only Questions involving comparisons between pairs 



a 

b 

a 

Note: the decision maker is 
indifferent between the allocation 
(a,a) and the allocation (b,b). 

b 

Figure ,2.7: INDIFFERENCE CURVES 
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of resources are necessary. The preferences of the decision maker can 

be completely encoded without defining an index or cardinal value 

function which would assign uni~ue numerical values to the resource 

allocations. 

Indifference curves specify a ranking of alternative resource 

allocations. This ordering of the resource allocations is said to 

be an ordinal ranking because there is no need to assign a uni~ue 

numerical value to the resource allocations. 

From a computational point of view, it is often easier to maximize 

an objective function than it is to work directly with indifference 

curves. As long as the ordering of the ranking provided by the indiffer­

ence curves in unchanged we can arbitrarily assign numerical values 

to the curves. If a function is used to assign the numerical values 

it is called an ordinal value function. Usually, we can arrange things 

so that the most preferred resource allocation also maximizes the 

ordinal value function. 

In problems where both monetary and other resources are involved, 

the ordinal value function can be expressed in monetary terms. Where 

money is not involved, the ordinal value function can be expressed 

in e~uivalent units of one of the resources. In problems where time 

is involved the ordinal value function can be expressed in terms of 

an e~uivalent uniform flow. 

This approach to the encoding of complex preferences has evolved 

out of the economist!s use of these mathematical tools. For a more 

rigorous discussion of indifference curves and ordinal value functions 



from the general point of view of this introduction see Raiffa [25], 

Pollard [24], Boyd and Mathes on [8 ], and Boyd [5 ]. 

In this section the notation 

is used to denote an ordinal value function defined on the resource 

vector z.+ The variables z and w denote primary resources while 

the variables x and y denote secondary resources. 

The Example 

Consider the problem of selecting a resource allocation z to 

maximize an ordinal value function V(~). We will employ the decision 

variable notation introduced in Section 2.2. Let 

e = vector of decision variables (policy). 

e = set of all possible policies. 

zk(~) = amount of the kth primary resource as a function of the 

policy e. The problem structu~e relating decision 

variables to secondary resources and secondary resources 

to primary resources is imbedded in this function. 

~(~) = vector of primary resources as a function of the policy 

e. Thus, 

The resource allocation problem is to choose a policy e E e to 

+ The indifference curves corresponding to V(~) are given by values 
of z satisfying the e~uation, V(z) = constant, where the constant 
is the numerical value assigned to an indifference curve. 
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maximize 

The simplicity of the problem statement hides the structure 

imbedded in this problem. Within this structure, secondary resources 

can be identified. Later, we will consider examples where the function 

~(~) is separable into project ~evenue and resource market cost 

functions. Most of the results of this section can be developed without 

assuming a special structure for ~(~). 

Mathematical Results (Theorem III, Bounds, and Algorithms) 

The following theorem applies to the example discussed in this 

section: 

* THEOREM III: If e maximizes 

K 

* over all e E e) and if w maximizes 

over all ~, and if 

-x-
then e maximizes 

over all e E e. 
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Proof: a) The theorem statement implies the following two inequalities: 

(1) 

holds for all 5!. E E>, and 

(2) 

holds for all w. 

b) Combining inequalities (1) and (2) gives 

which holds for all wand all e E E> • 

c) Since (3) holds for all !, it must also hold for ! = ~(5!.) 

where e E E>. In this case the terms involving IJ.k on the left side 

of (3) cancel and 

holds for all e E E> • 

d) BY the statement of the theorem 

-)(- * 
! = ~ (5!. ) • 

Thus, terms involving IJ.k on the right side of (3) cancel and the 

inequality 

holds for all e E E>. Hence, the theorem is proved. 
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This theorem is a special case of Theorem II with minor changes 

in notation and with R(~) = 0 and C(~) = -v(~). Thus, the dis­

cussion of Theorems I and II also applys to Theorem III. 

Since Theorem III is not meaningful for a single resource, its 

geometric interpretation is more difficult to visualize. In the case 

where k = 2 the objective function V( defines a surface; the 

height of the surface above the (zl,z2) plane is given by the numerical 

value of the function. The set of resource allocations are points in 

the plane. The prices ~l and define the slope of a 

plane in three-dimensional space. 

The first maximization problem in Theorem III is e~uivalent to 

raising the plane from below the (zl,z2) plane until it touches an 

element of the set of resource allocations in the (zl,z2) plane. 

The second maximization problem is e~uivalent to lowering the same plane 

until it touches the surface V(). If the resource allocations deter­

mined by both maximization problems are the same, then the conditions 

of the theorem are satisfied. Naturally, gaps may exist that prevent 

the theorem from identifying the optimal solution. 

The upper and lower bounds on the optimal value of the ordinal 

objective function can be obtained during an iterative search. The 

lower bound is given by the best available solution obtained in the 

course of the iterations. The upper bound is given by ine~uality (4) 

in the proof of Theorem III. The bounds are stated formally below: 

BOUNDS: 

Let et maximize 
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K 

~ fll zkC~) 
k=l ~ 

over all e E @ and let WI maximize 

over all w. Lower and upper bound on the optimal value of V( ) 

are given by 

The successive approximations algorithm is particularly applicable 

to problems with arbitrary objective functions because an ordinal value 

function is usually both differentiable and concave. The successive 

approximations algorithm follows from the statement of the necessary 

and sufficient conditions for a solution to the second optimization 

problem in Theorem III. The algorithm is as follows: 

SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Guess an initial 

2. Maximize 

o 
l:!:., l:!:. or start with a trial 

over all e E @' Call the result en. 

z at Step 3. 

3· Calculate a new vector 
n+l A according to the relationship 



k 1, ... , K • 

(Note: V() must be concave and differentiable in this algorithm.) 

4. If 
n+l 

I.l 
n 

H. , then the conditions of Theorem III are satisfied 

and en is equal to 

return to step 2 using 

* e , the optimal policy. 

n+l 
H. 

otherwise, 

A relaxation constant can be applied in step 3 to improve con-

vergence. In this case the new I.l is determined by the relationship 

The price directive gradient algorithm is derived by applying a 

gradient algorithm to minimize the upper bound on the arbitrary objective 

function. The algorithm is as follows: 

PRICE DIRECTIVE GRADIENT ALGORITm~: 

o 
~, ~ 1. Guess an initial 

2. Maximize 

over all e E 8. Call the result en. 

3. Maximize 

over all ~> Call the result 
n w. 

4. n 
If w ~(~n), then the conditions of Theorem III are 
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satisfied and en is equal to e* , the optimal allocation. 

otherwise, compute a new value of ~ according to 

where a is an appropriate constant and return to step 2. 

Decomposition 

The computational effectiveness of the algorithms depends on 

the relative difficulty of the original optimization problems and the 

optimization problems imbedded in the algorithms. The optimization 

problem in step 2 of the algorithms has a special structure that the 

original problem does not possess; the objective function of the problem 

in step 2 is separable. For problems with separable objective functions 

we can draw on the theory developed in Sections 2.1 and 2.2. 

To see how the theory for separable objective function can be 

applied at this point) consider the case where 

for k = 1, •.. , K. 

J J 
~ r J. k (~J') - ck ( :B x. (Q.) ) 

j=l j=l J J 

The functions r.k(e.) describe the amount of 
J -J 

the primary resource zk produced by project j. The projects consume 

secondary resources x. 
J 

purchased in a resource market. The cost 

of the secondary resources in terms of the primary resource is given 

by c
k
(). In order to maximize 



over all e E e, we can instead maximize 

r·k(e.) - ~kx.(e.) 
J -J J -J 

over all £ E e where - rw. X," X ""J' - ~l \2J The price ~k can be 

determined along with the price ~k in step 3 of the successive approxi­

mations algorithm or step 4 of the price directive gradient algorithm. 

Another alternative is to determine the prices on the primary resources 

by the successive approximations algorithm and use the price directive 

gradient algorithm to determine the prices on the secondary resources. 

Organizational Interpretation 

The results of this section can be interpreted in terms of a 

decentralized organization similar to that discussed in Section 2.1. 

The role of the impresario who is at the head of the organization 

can be compared to the role of the resource managers. In Section 2.1, 

the impresario was responsible for the organization, but delegated 

the decision making to project managers and resource managers. With 

arbitrary objective functions, the impresario assumes a more active 

role similar to that of a resource manager. 

In terms of the successive approximations algorithm the impresariols 

task is to assign prices on the primary resources. If the impresario 

has a complete description of the arbitrary objective function (ordinal 

value function) then he sets the price of the resource equal to the 

marginal value of the resource. If the impresario does not have a 

complete description of the arbitrary objective function then it may 

be easier for him to directly assign the prices rather than encode an 
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ordinal objective function.+ Thus, the impresario can be viewed as 

a primary resource manager. Of course, he could also delegate this 

task to a primary resource manager. 

In a corporation the primary resources might be dividends, for 

example. The flow of dividends over time would depend on the flow of 

secondary resources over time. In this case, the arbitrary objective 

function (ordinal value function) would describe the corporation's 

time preference for dividends. The resulting prices can be given an 

interpretation as discount factors. 

In a governmental example the primary resources would include 

measures of social value. The social values would depend on the allo-

cation of other secondary resources. In this case, iteratively encoding 

the prices might be simpler. 

2.4 Relationship of the Mathematical Foundation to the Methodology 

This chapter provides a mathematical foundation for the methodology 

except for problems under uncertainty 'which are considered in Chapter 

IV. We will now discuss how the mathematical results fit into the 

overall methodology. 

Using the methodology a decision problem is analyzed in two main 

steps. The first step is to carefully structure the problem and to 

identify the special structure required for decomposition. The second 

step is to justify the decomposition methods resulting from the first 

+ The observation that preferences 
prices provides an approach to the 
situations. Often it is easier to 
than to directly encode an ordinal 
developed in detail by Boyd [5]. 

can be encoded directly in terms of 
assessment of preferences in complex 
iteratively assess the prices rather 
value function. This approach is 



step by applying the mathematical foundations developed in this chapter. 

The first step of the methodology reQuires creativity on the part 

of the analyst. Nevertheless, a general approach to structuring a 

problem is roughly as follows: First, formulate the decision problem 

as an unconstrained optimization problem. This means that the sources 

of resources are carefully modeled rather than simply limiting the 

availability of the resource. Also, the preferences of the decision 

maker are carefully structured rather than eliminating certain outcomes 

from consideration. Then, determine the necessary conditions for an 

optimal solution to the problem by temporarily assuming the methods 

of elementary calculus are valid for the problem. Generally, this 

temporary assumption will not be valid, but the mathematical results 

developed in this chapter can be applied later to justify the resulting 

decomposition. 

As indicated in Section 201, the necessary conditions for an 

optimal solution to a decision problem result in a set of simultaneous 

eQuations. These eQuations usually can be solved iteratively by 

guessing certain terms in the eQuations and solving the eQuations 

one-by-one. The terms initially guessed are calculated from the solu­

tions to the eQuations. If the guesses are correct then the optimal 

solution is available; otherwise use the new values of these terms to 

solve the eQuations again. Generally, the terms which are initially 

guessed can be interpreted as prices. 

The iterative solution of the necessary conditions suggests a 

successive approximations algorithm for solving the problem. At this 

point, the analyst may review his formulation of the problem and 
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method of solution. Often, by viewing the problem in another way or 

by solving the simultaneous eQuations differently, a better successive 

approximations algorithm can be devised. Generally, the analyst should 

attempt to minimize the number of resource markets in the problem so 

that only a few prices are used to coordinate the solution of a large 

number of subproblems or projects. The organizational interpretations 

of decomposition are particularly useful in providing insight into 

new ways to structure and solve a problem. 

The second step in the methodology justifys the solution method 

in situations where the assumptions used in obtaining the necessary 

conditions are not valid. The mathematical results developed in this 

chapter can be applied by combining the results of the various theorems 

to solve the more complicated problems. In addition to justifying a 

method of solving a given problem, the mathematical results also provide 

additional algoritDJns and bounds on the value of the optimal solution. 

Another way the mathematical results can be applied is to derive 

a new optimality theorem for the particular problem being analyzed. 

Usually, an optimality theorem can be stated once the successive 

approximations algorithm is developed in the first step of the metho­

dology. The proofs of the optimality theorems developed in this chapter 

are simple and new optimality theorems can be easily proved for particular 

problems by following the same procedure used in proving the present 

theorems. 

We have seen that the methodology developed in this dissertation 

combines the creativity of the analyst with a mathematical foundation 
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for decomposition. In the next chapter, we demonstrate this methodology 

on a complex electrical power system problem. 
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CHAPTER III 

AN ELECTRICAL POWER SYSTEM PLANNING PROBLEM 

A dual purpose is intended for the example presented in this 

chapter. The first purpose of the example is to provide an effective 

medium for communicating some aspects of the methodology developed in 

this dissertation. The second purpose of the example is to develop 

new power system planning methods. 

This chapter is written so that a person unfamiliar with the 

technical details of power systems can follow the logical development 

of the model. In Section 3.1 we point out that power system planning 

is complicated by the technical interactions between plants. These 

interactions are visible as the transmission lines which interconnect 

generating plants to serve a common market for electricity. In 

Section 3.2, the previous work on the example is discussed. Section 

3.3 develops the model of the electrical system in detail. The inter­

actions between plants are highlighted in the development of the model. 

The structure of the model permits very general submodels of the 

generating plants and other elements of the system. 

In Section 3.4 decomposition of the problem is discussed. An 

important part of this section concerns the development of a sequential 

algorithm to overcome the effect of gaps without requiring penalty 

functions. 

A numerical example is presented in Section 3.5. The data assump­

tions and computer program are explained. The results of the numerical 
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example clearly demonstrate the practical value of the methodology 

developed in this dissertation. Finally) Sections 3.6 and 3.7 summarize 

the conclusions based on the model and suggest several directions for 

extending the scope of the model. 

3.1 Introduction to Electrical Power System Planning 

Electrical power system planning includes both strategic invest­

ment decisions and tactical operating decisions. In the analysis of 

investment decisions it is only necessary to treat the strategic decisions 

in detail. Tactical decisions need be considered only to the extent 

that they affect strategic decisions. In this chapter we focus on 

strategic decisions concerned with the installation of new generating 

plants. 

Power system planning is a complex problem. The complexity of 

the problem is due, in part) to the following considerations: 

1. Extended planning horizons are required in an analysis because 

of the long lifetimes of the expensive capital equipment 

used in power systems. 

2. A detailed model of the entire system is required to evaluate 

capacity investments because of the complex technical inter­

actions between generating plants in an interconnected power 

system. 

For example) consider capital investments in generating equipment. 

The decision involves selection of a mix of plant types and plant sizes 

to be installed in an existing system. An analysis of such decisions 

requires extended planning horizons because some types of generating 

equipment operate for sixty years or longer. Technical interactions 
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occur, for instance, because the ~uantity of fuel burned by a plant 

depends on the operation of all other plants by virtue of their inter­

connection to serve a common market for electricity. Technical inter­

actions also occur because the system reliability depends in a complex 

way on the reliability of each plant. 

The large number of possible combinations of individual plants in 

the long planning period makes optimization very difficult in power 

system planning. Decomposition and iteration are particularly useful 

in resolving such combinatorial problems. To achieve decomposition 

re~uires careful structuring of the problem to account for the inter­

actions between plants. Before structuring the power system model we 

will summarize the previous work on the example. 

3.2 Introduction to the Plan~ing Example 

Development of a detailed planning model for an electrical power 

system re~uires many man-years of effort. For this reason, the planning 

example is based on a model developed for a previous analysis of the 

same problem. The contribution of this chapter is to reformulate the 

model so that it can be decomposed. 

The original analysis was performed for the government of Mexico 

[10]. The analysis considered the capacity expansion of the Mexican 

electrical power system. The emphasis of the analysis was on the 

development of a flexible planning tool and the installation of nuclear 

power plants in the middle 1970's. 

The original analysis involved representatives of the Mexican 

electrical system and decision analysts from stanford Research Institute. 
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The Mexican team took responsibility for assuring that the data and 

model of the electrical system were adequate for the analysis. The 

SRI team was responsible for the decision methodology. The following 

discussion indicates the scope and detail incorporated in the original 

analysis. 

Figure 3.1 is a block diagram that summarizes the original model 

of the Mexican electrical system. 

The analysis concerned the installation of the first nuclear 

plant in the middle 1970's. This first decision is made in the context 

of the overall installation and operating policy of the system. 

The environment of the system is described by financial models, 

energy models, technology models, and electrical demand models. Given 

an installation and operating policy a time stream of outputs is pro­

duced by the model of the electrical system. Some of the outputs, 

like consumption of electricity J combine vii th price to yield a book 

profi t for operation. The book profit is adjusted for quality of 

service as measured by outages to produce system profit. 

Since the Mexican power system is a government monopoly, it is 

influenced by measures other than profit alone. Certain outputs other 

than electricity are produced by the system operation: these outputs 

may have either positive or negative values to Mexico. If these outputs 

are valued quantitatively, then a social value function that shows the 

social profit (or loss) generated by the system in addition to system 

profit can be realized. The combination of the two would be national 

profit. The time preference of Mexico would then be applied to this 

time stream of national profit to see which policy produces the highest 
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value. The result is a single measure of value that could be used in 

assessing any system policy, and in particular the decision regarding 

the first nuclear decision. 

The original analysis re~uired a number of approximating assump­

tions. The most significant assumption is the representation of the 

system as if it were concentrated as a single geographical point. 

Thus transmission effects and alternatives were not explicitly con­

sidered. 

The original analysis did not explicitly treat the relationship 

between the demand for electricity and the ~uality of service and 

price. A forecast of demand based on predicted service and pricing 

policies was used. In addition, certainty was assumed for all forecasts 

except plant failures, stream flows, and short-term forecasts of demand. 

These and other assumptions were thought to be reasonable in terms 

of an analysis of the first nuclear installation. The computational 

advances provided in this dissertation should reduce the need for 

such assumptions in future analyses of this type. 

The main factor limiting the scope of the original analysis was 

the ability of the analysts to formulate, program, and solve a complex 

system model. The model of the electrical system in the center of 

Figure 3.1 had to be ~uite detailed in order to capture the important 

interactions between individual plants. It was not desirable to 

translate the model into a linear or nonlinear programming format 

because of the restrictive assumptions that would be re~uired. The 

large number of alternative policies and discrete nature of the alter­

natives prevented the direct use of gradient search methods. Other 



methods also seemed to have similar difficulties. 

The approach to optimization taken in the original analysis was 

to generate trial policies by heuristic methods and select the policy 

having the highest measure of value. Eventually, a policy generation 

routine evolved that installed plants on the basis of an approximation 

to the incremental value of the plant. The approximate value of a 

plant was computed from readily available information and parameters 

which can be interpreted as prices. These prices were set by an 

iterative process. 

The intuitive optimization ideas described above were developed 

without a firm theoretical foundation. The lack of theoretical tools 

for problems of this type motivated the author's research in this 

area. The results of this dissertation are mechanically quite different 

from the methods of the original analysis but are very similar in the 

general approach to optimization. 

3.3 Formulation of the Plan~ing Example 

In formulating the planning example it is useful to suppress many 

of the details of the electrical system model that do not cause diffi-

culty in decomposing the problem. For example, social values are not 

explicitly treated in the planning example because it turns out that 

the social values treated in the original analysis can be accounted 

for by modifications to the parameters of the model that we will 

describe.+ 

+ In situations where social values are more critical, the methods 
developed in Section 2.3 for problems with multiple measures of per­
formance are applicable. 
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Our decision problem is to choose an installation policy for 

the expansion of the electrical system. By a policy we mean a complete 

list of plants to be installed over the planning period of the analysis. 

Actually, the only decision to be based on the analysis is the next 

installation in time; the model can be rerun before the decision on 

the second installation is made. Thus, some approximation in the policy 

for installations beyond the first installation is reasonable. 

In order to describe the problem mathematically the following nota-

tion is used. Let 

8 - an installation policy. Given a policy 8 a complete 

technical description of each plant installed by the 

policy is available.~ The plants in a policy are 

indexed by the integers 1, ... ,J where J is 

the maximum number of plants in a policy. Thus 

8 = (8
1

, ... , 8 ) 
- J 

where 8. describes the jth plant in policy 8. 
J 

e _ set of all possible installation policies. In Section 

3.3 the properties required of this set for decompo-

sition are discussed. 

T ~ horizon of planning period (t = 0, ... , T). 

_ overall (national) profit+ from the operation of the 

system in period t while under policy 8. 

+ See Figure 3.1. 

~ Including the installation date of the plant. 



VT+l(~) - terminal value of the system after horizon year T 

under policy 8. 

The decision problem is to select a policy 8 E e to maximize 

the present value of profit given by 

where the 'I 's t 
are discount factors that reflect the time preference 

of the decision maker.+ 

The overall profit ~t(~) is composed of a number of revenue and 

cost cash flows. A separate model for each cash flow is developed in 

this section. Given a policy, each cash flow is assumed to be inde-

pendent of the other cash flows. Notationally, let 

R
t 

- revenue received by the system in period t due to charges 

for the electrical energy delivered. The revenue is 

independent of the installation policy in this example. 

Ft(~) - fixed operating cost of the system in period t under 

policy 8. This cost includes the cost of routine 

maintenance, staff, and other overhead of the system. 

0t(~) = variable operating cost of the system in period t under 

policy 8. This cost covers the cost of fuel and other 

expenses that depend on the amount of electrical energy 

generated. 

+ A more fundamental approach to time preference was discussed in 
Section 2.3. In terms of the more fundamental approach, the discount 
factor 'It can be viewed as the price at which the decision maker will 
trade units of profit in the initial period for units of profit in 
period t. The assumption implied by the present value model is that 
the price 'It is insensitive to the flow of profits. 
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Ct(~) = reliability outage charge in period t under policy e. 

this cost is a paper or actual adjustment to the books 

of the system to account for the Quality of service as 

measured by outages. 

It (~) = installation cost of plants in period t under policy 

e. This cost is the cash flow reQuired to purchase 

generating eQuipment. The cash flow includes the effects 

of financing. 

The overall profit in each period is simply the revenue less 

the sum of the costs and is given by 

0, ..• , T . 

The models underlying these functions are structured in the following 

subsections. 

Revenue Model 

Revenue from the sale of electrical energy and demand for elec­

tricity are assumed to be independent of the installation policy in 

this model. The purpose of including a revenue model is to retain the 

objective of profit maximization. Although cost minimization is mathe­

matically eQuivalent in this case, the inclusion of a revenue model 

makes explicit assumptions that might remain hidden if cost minimization 

were the objective. 

The major source of revenue for a power system is from the sale 

of electrical energy to the system1s customers. Let 
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P
t 

- price of electrical energy in period t in 

dollars per megawatt hour ($/MW-hr) 

d = average demand+ in period t- t (MW) 

6 = number of hours per period (hr). 

The revenue is given by 

The price of electricity is fictitious since the distribution 

system is not modeled. The price can be viewed as accounting price 

charged by the generating system for energy delivered to the distri-

bution system. 

The important assumption in this revenue model is that demand is 

independent of the installation policy. In a more detailed model we 

would be interested in the effect of price and the Quality of service 

on the demand. Demand forecasting is discussed in Section 3.6 and 

Chapter V. The amount of revenue lost as a result of outages is 

accounted for in the reliability outage charge model. 

Fixed Operating Cost Model 

The fixed operating cost model accounts for the cost of maintenance, 

operating staff, and other overhead charges associated with the operation 

of the system. We assume that the fixed operating cost of a plant is 

+ The demand for electricity in industry parlance is the instantaneous 
rate at which energy is supplied by the system. Thus, average demand 
during a period multiplied by the duration of the period is eQual to 
the total energy supplied during the period. 
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independent of effects attributable to other plants in the system. 

Hence, the fixed operating cost of the system during period t is 

the sum of the fixed operating costs of the plants installed in the 

system in period t. The fixed operating cost is given by 

J 
Ft(~) ~ f.(t,8.) 

j=l J J 

where 

f.(t,8.) - fixed operating cost in period t of 
J J 

plant in policy' 8. 

.th 
J 

This formulation of the model permits the use of completely 

arbitrary functions (except for the independence between plants) to 

describe fixed operating cost. In general, the fixed operating cost 

of a plant depends both on the technology of the plant at the time 

of installation and on changes in the prices of materials and labor 

over the life of the plant. Specific examples of fixed operating cost 

models are developed for the numerical example in Section 3.5. 

Variable Operating Cost Model 

The variable operating cost model accounts for expenditures that 

depend on the amount of energy delivered by the system. The variable 

operating cost is affected by the variations in demand, the proportions 

of the various types and sizes of plants in the system, and the oper­

ating POliCY.+ 

+ Very sophisticated models and optimization techniques have been 
developed for the economic operation of a power system. At the level 
of strategic planning of installations the model developed in this 
section appears to be adequate. In a full-scale analysis a more detailed 
model could be used to check the accuracy of this model. 
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In the following model the demand for electricity is characterized 

separately from the characterization of the cost of meeting the demand. 

First, we consider the demand model. 

The demand (rate of energy flow) for electricity depends on the 

time of day, day of week, season, year, and random events such as 

weather. For strategic planning purposes we can represent the fluctu-

ations in demand during a period by a load duration curve (Figure 3.2) 

or a demand frequency distribution (Figure 3.3). 

The load duration curve gives the fraction of time (probability) 

that demand in a particular period is at least of a given magnitude. 

The demand frequency distribution is the derivative of the load duration 

curve and can be viewed as a probability density function. In Chapter 

V uncertainty is treated in more detail; at present, a frequency inter-

pretation of probability is adequate. 

At this point, we can allow the demand frequency distribution for 

a given period to be completely arbitrary. Thus, let 

d 
gt(d) - frequency distribution on demand in period t where 

the area under is unity, by definition. 

Characterization of the instantaneous operating cost as a function 

of demand is more difficult. Figures 3.4 and 3.5 show two related 

characterizations of the operating cost of a hypothetical system. 

Each plant in the system is represented by a vertical bar in 

Figure 3.4. The heights of the vertical bars are proportional to the 

operating cost per unit of output of the plants; short bars indicate 

the plants with the lowest operating cost per MWh produced. 
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For strategic planning purposes it is reasonable to assume an 

operating policy that loads plants in order of efficiency; the most 

efficient plants provide most of the energy. Thus, Figure 3.4 is 

also a graph of the marginal operating cost of the system (cost of 

satisfying an additional unit of demand). 

The system hourly operating cost function is shown in Figure 3.5. 

This function is obtained from Figure 3.4 by integration. 

A detailed description of the system hourly operating cost such 

as in Figure 3.5 requires knowledge of the hourly operating cost and 

capacity of each plant in the system. For reasons that will become 

clear in Section 3.4, it is necessary to characterize the system hourly 

operating cost in terms of a few parameters. Furthermore, these para­

meters should be determined by a summation of the parameters describing 

the independent plants in the system. The remainder of this subsection 

is devoted to characterizing the system hour~y operating cost in this 

way. 

In an electrical system there are four major types of plants. 

They are: 

1. gas turbines - low capital cost but high operating cost 

2. conventional thermal - medium capital cost and medium oper­

ating cost 

3. nuclear - high capital cost but low operating cost 

4. hydro - very high capital cost, negligible operating cost, 

but limited availability of sites and energy. 

Hydro plants are treated as a special case in the model described 

beloW. 
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The variation in hourly operating cost among plants of the same 

type is relatively small compared to the variation in operating costs 

among plant types. Thus, the system hourly operating cost is adequately 

described by the total capacity and average hourly operating cost of 

each type of Plant.+ 

Figures 3.6 and 3.7 show the marginal system hourly operating cost 

and the total system hourly operating cost curves as a function of 

demand where the curves are parameterized as follows: 

X. == 
l 

amount of capacity of the jth type in the system (MW). 

I == number of types of plants in the system. Usually I = 3 

where i = 1,2,3 represents nuclear, conventional thermal 

and gas turbine respectively (note that hydro is not in-

cluded at this point). 

h. == total hourly operating cost of all plants of the ith type 
l 

($/hr) . 

The advantages of this characterization of the system hourly 

operating cost is that the parameters X. 
l 

and h. 
l 

are easily calcu-

lated from the technical descriptions of the plants. Let 

c . . (t,B.) _ available capacity of the ith type of plant in period 
lJ J 

t from the jth plant in policy B (MW). 

K .. (t,B.) == hourly operating cost of the ith type of plant in 
lJ J 

period t :from the J.th 1 t· l' p an In po lCY B ($/hr) . 

+ This assumption could be checked by comparing the results of this 
model with a more detailed model or results of actual system operation 
where available. 
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Both of these functions are defined to be zero if the index i does 

not correspond to plant j's type. The dependence on t can be 

used to account for the effects of maintenance during a period, trends 

in the performance of installed plants over time, and trends in the 

prices of fuels over time. The parameters of the system hourly oper-

ating cost function are given by 

and 

J 
= \', 

U 
j=l 

J 

c .. Ct,S.) 
lJ J 

}; K • • Ct,S.) .'--" lJ J 
J=l 

i 1, ... , I, t = 0, ... , T , 

i = 1, ... ,I, t 0, ••• , T , 

where a subscript has been added to the parameters of the system hourly 

operating cost function to indicate the period. The system hourly 

operating cost function can be written as 

where 

(xit(~)' '0' ,XIt(~))' vector of total available capaci-

ties of each type in period t. 

(h. (S), ..• ,hIt(S)), vector of total hourly operating 
lY - -

costs of each type in period t. 

In Section 3.4 we will often find it useful to write 

J 

~t(~) = D c.Ct,S.) 
. 1 -J J J= 

t 0, •.• , T 

and 
J 

E:t (~) = z; h.(t,S.) 
. 1 -J J J= 

t = 0, ••• , T 
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where 

c.(t,e.) 
-J J 

( c
l 

. ( t ,e . ) , 
J J 

. .. , cI·(t,e.)) 
J J 

j ::= 1, ... , J , 

K.(t,e.)::= (Kl·(t,e.), ... ,KIo(t,e.)) 
-J J J J J J 

j 1, ... , J . 

Models of both the demand and the cost of meeting the demand have 

now been developed. The system variable operating cost in period t 

is given by 

where+ 

This computation essentially involves weighting the system hourly 

operating cost function for each demand level by the fraction of the 

time the system is at that demand level. 

Hydro plants are treated as a special case because the total 

amount of energy available from a plant during a given period is limited 

by the available water flow and water storage capacity. We will model 

hydro plants as a source of energy that is used to reduce the demand 

placed on the thermal (non-hydro) plants. 

Figures 3.8 and 3.9 illustrate a method of operating hydro plants 

that is reasonable for strategic planning purposes. Let 

Xo = amount of hydro generating capacity in the system (MW) 

+ The generalized integration symbol f 
variables are defined on discrete sets. 
the sets are continuous. 
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Figure 3.8: HYDRO ALLOCATION ON LOAD DURATION CURVE 
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Figure 3.9: HYDRO ALLOCATION ON ENERGY CURVE 
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hO = total available hydro energy during a given period (MW-hr~+ 

The shaded area in Figure 3.8 represents the available hydro energy 

divided by the total energy re~uirements. The hydro energy is used 

most effectively when it displaces the least efficient thermal plants 

that operate at times of high demand.* Graphically, the best operating 

policy for hydro plants is found by moving the indicated regions of 

Figures 3.8 and 3.9 as far to the right as is possible while still 

employing all of the hydro energy, h
O

. At some point, further movement 

of the shaded area to the right will be limited by the available hydro 

capacity xO. 

The allocation of hydro energy by the method described above is 

easily implemented in a computer model in terms of the operation pictured 

in Figure 3.9. In relation to the allocation of thermal energy, the 

hydro energy simply removes a section from the fre~uency distribution 

on demand used to calculate the system variable operating cost. 

The variable operating cost model with hydro included can be 

described in the same notation. The period system variable operating 

cost is given by 

where 

(Xot(~)' ... 'XIt(~))' vector of total available capaci-

ties of each type in period t. 

+ Uncertainty in the available hydro energy due to uncertainty concerning 
the weather could be incorporated in this model. 

* The idea is to use up all of the hydro energy and at the same time have 
the fUll hydro capacity available for meeting the peak demands. 
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~t(~) (hOt(~)' ... ,hIt(~))' vector of (1) total hourly 

operating cost of plant types 1, ... ,I; and (2) 

total available hydro energy in the case of type 0, 

in period t. 

The parameters of this variable operating cost model are given as 

before by 

J 
)~ c. (t,e.) 
.~ -J J 
J=l 

t = 0, .•. , T , 

~t(~) t = 0, ... , T , 

where c.(t,e.) 
-J J 

and K.(t,e.) have an additional component for hydro 
-J J. 

and K .(t,e.) 
OJ J 

refers to available hydro energy of the jth plant in 

period t rather than the hourly operating cost which is zero for 

hydro. 

In certain situations the demand for energy can exceed the combined 

energies available from all plants in the system. Normally, reliability 

considerations will assure sufficient peaking capacity. Hydro plants, 

however, have the characteristic that their peaking capacity often 

exceeds their sustainable generating capacity. If sufficient energy 

is not available to meet demand, then an energy deficit is said to 

occur. 

An energy deficit involves monetary costs and inconvenience to 

the system1s customers. The situation is not as serious as outages 

caused by sudden plant failures; presumably, an energy deficit can 

be forecasted in advance. One way to account for the costs imposed 

by an energy deficit is to assign a price to the energy not supplied 
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as a result of energy deficits. This price will be greater than the 

variable operating cost of the least efficient plants, but less than 

the price assigned to reliability energy losses. 

In terms of the model, the cost of an energy deficit can be added 

to the variable system operating cost. The energy deficit is simply: 

The energy is not supplied after all available plants have been allo­

cated. The cost of an energy deficit is the price assigned to a deficit 

times the energy not supplied. 

Reliability Outage Charge Model 

In this subsection a model of system reliability is developed. 

The model is unique because it provides an economic measure of reliability. 

The more usual approach to the analysis of reliability results in a 

technical measure of reliability such as IIprobability of loss of load. II 

In an analysis of installation decisions the technical measure of 

reliabili ty is often constrained to be above or belo\i a given level. 

Alternatively, an economic measure of reliability avoids all the dis­

advantages of artificial constraints that are discussed in Section 2.1. 

For strategic installation planning a reasonable economic measure 

of reliability is an outage charge based on the energy demanded but 

not supplied (energy loss) because of insufficient available generating 

capacity. In the original analysis a price on energy loss was deter­

mined from a previous analysis of the overall Mexican economy. 

The outage charge for a given period is an uncertain quantity. 

In this analysis, average (expected value) outage charge is used as 

the economic measure of reliability. The average outage charge in 
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~eriod t under installation policy e is given by 

where 

~t = price on energy loss ($/MW-hr), 

6 = duration of period (hrs), 

E
t 
= average capacity deficit (MW). 

Thus the average energy loss in period t is 6Et. 

At a given instant in period t, 

where 

Et = capacity deficit (MW), 

dt - demand (MW), 

c
t 

= available capacity (MW). 

The average capacity deficit depends on the probability distribution 

on capacity and the demand fre~uency distribution according to the 

relation 

where 

f (d-c) g~ (c I.~) g~( d) 
c,d 

d> c 

g~(cl~) = probability distribution on available capacity in period 

t under installation policy B. 

= demand fre~uency distribution for period t. This dis-

tribution is identical to the demand model used for 

computing variable operating cost in the previous 

subsection. 
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The generalized integration re~uired above is performed over the portion 

of the sample space where demand exceeds available capacity. 

The probability distribution on available capacity is determined 

from the probability distribution on capacity of each plant in the 

system. Each plant in the system is assumed to be statistically inde-

pendent of all other plants with regard to forced outages. Mathematical 

convolution can be used to obtain the system capacity distribution from 

the independent plant capacity distributions [ 9 ]. 

For decomposition we would like to parameterize the system capacity 

distribution so that the parameters are obtained by a summation of 

parameters describing the individual plants (similar to the parametri-

zation of the system hourly operating cost in the previous subsection). 

Three possible parameters are obvious: the total available (nameplate) 

capacity, average available capacity, and variance of the available 

capacity can be computed by summations of the total, average and variance 

of the available plant capacities. Fu~ther parameters having the same 

mathematical characteristics (additivity for independent distributions) 

are given by the cumulants of the probability distributions [16]. 

The reliability model in the original analysis used convolution 

for determining the system capacity distribution. The probability 

distribution on available capacity of each plant is represented by a 

Bernoulli probability distribution where the probability of failure 

of a plant is defined by the ratio 

time on forced outage 
time on forced outage + time available for operation • 
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The failure probabilities are assigned on the basis of both historical 

and subjective information. The system capacity distribution is obtained 

from the Bernoulli probability distributions by numerical convolution 

with minor approximations to account for the irregular sizes of plants. 

A rough empirical analysis of the results of the original analysis 

shows that a three parameter characterization of the system capacity 

distribution is adequate. The Weibull and Gamma distribution are two 

distributions that provide a close visual fit to the probability dis-

tributions generated in the original analysis. In order to determine 

the appropriate distributions for other power systems, a detailed 

analysis using convolution would have to be performed. 

Based on the previous discussion the average outage charge is 

given by 

J (d-c )g~ (c I X t (~) ,Xt C~) ,'ft (~)g~( d) 
c,d 

d> c 

vlhere 

Xt(~) = total installed capacity in period t under policy B. 

Xt(~) = average available capacity in period t under policy B. 

~t(~) = variance of available capacity in period t under policy 

B. 

The parameters Xt(~)' Xt(~) and ~t(~) are computed as follows: 

J 
= J" c.(t,B.) 

j=l J J 
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J 
= 1. c.(t,8.) 

j~l J J 

J 
L: ~.(t,8.) 

. 1 J J J= 

where 

c.(t,8.) _ installed capacity in period t of the jth plant 
J J 

in policy 8. 

c.(t,8.) _ average available capacity in period t of the jth 
J J 

plant in policy 8. 

r (t,8.) _ variance of available capacity in period t of the 
J J 

. th 1 t· l' J P an ln po lCY 8. 

The functions c.(t,8.), c.(t,8.) and v 
c.(t,8.) allow the probability 

J J J J J J 

distributions on the plant capacities to be completely general functions 

of time. Thus, maintenance, break-in periods of low reliability, and 

the effects of age can be accounted for within this model. 

Another important effect that is easily incorporated into the 

reliability model is short-term uncertainty in demand. Short-term 

uncertainty in demand can be expressed in terms of a probability dis-

tribution on the parameters of the load duration curve for a given 

period. The time at which the probability distribution is assigned 

is at the last opportunity to install new capacity to be operated 

in the given period. The load duration curve and the probability 

distribution on the parameters of the load duration curve can be com-

bined into a new load duration curve by integrating over the parameters 

of the load duration curve. The resulting curve is used in the model 

in the same way as the original curve. Generally, the new curve will 
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have a sharper peak and a lower load factor. In Chapter VI we discuss 

power system planning under uncertainty in more detail. 

Installation Cost Model 

The installation cost model determines the cash flow resulting 

from the capital costs of new generating e~uipment. In this model 

the installation cost cash flows are assumed to be independent among 

plants. This assumption is valid if the method of financing a plant 

does not affect the rate or amount of financing on all other plants. 

The total installation cost cash flow in period t is given 

by 
J 

== E y.(t,e.) 
. 1 J J J== 

where 

y.(t,e.) 
J J 

installation cost cash flow in period t for the 

.th l t· 1· J p_an ln po lCY e. 

The functions y.(t,e.) include the effects of financing. Hence, 
J J 

these functions account for construction costs, funds borrowed, and 

interest and principle on debt. Within these functions, extremely 

general financial models are possible. 

Terminal Value Model 

The terminal value model assigns an approximate value to the 

system at the end of the planning period. A good terminal value model 

often greatly reduces the cost of an analysis by reducing the number 

of periods re~uiring detailed analysis. 

A terminal value model is difficult to construct because a fully 
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accurate model is as complicated as the entire system model. Clearly, 

only a rough approximation is reasonable. The effects of the terminal 

value model can be checked by sensitivity analysis. 

We will approximate the terminal value of the system by assigning 

independent terminal values to individual plants. Thus, the terminal 

value of the system in period T + 1 under policy e is given by 

J 
:z:,; v .(T+l,e.) 

. 1 J J J= 

where 

v.(T+l,e.) = terminal value in period T + 1 assigned to the jth 
J J 

plant in policy e. 

The terminal values might be assigned on the basis of the type, 

size and age of the plant at the horizon. The terminal value of the 

plant includes the remaining installation cost cash flows discounted 

to the period T + 1 at an appropriate discount rate. 

3.4 Decomposition of the Planning Example 

The planning example formulated in Section 3.3 can be stated in 

a form similar to that used for the multi-resource problem in Section 

2.2. The decision problem is to select a policy e € ® to maximize 

J 
L; [f.(t,e.) + y.(t,e.)] 

j=l J J J J 

J 
- 0t( ~ ,::.(t,e.), 

. 1 J J J= 

J 
~ K.(t,e.)) 

. 1 -J J J= 

J 

Ct('L 
J=l 

c . ( t ,e . ) , r c. ( t ,e . ), . ±, X
J
. ( t , e

J
. ) ) I 

J J j=l J J J=l 

J 
+ IT+l .:8 v. (T+l,e.) 

. 1 J J J= 111 



In this form, Theorem II in Section 2.2 applies directly to this 

problem. 

The formulation of this power system model to the point where 

Theorem II can be applied is a creative process. The model is described 

in Section 3.3 with the benefit of hindsight. One of the useful tools 

in decomposing this problem was to formulate the necessary conditions 

and proceed as suggested in Section 2.1. 

Decomposition of the problem re~uires that the policy set e be 

separable, i.e., 

In terms of the planning example, this condition re~uires that the 

availability of a plant for installation be independent of the instal-

lation of other plants. However, by restructuring the problem even 

this limitation can be overcome, if necessary. 

Successive Approximations Algorithm 

Once the problem is described in the form used above, the results 

of Section 2.2 can be applied (or rederived) with very little effort. 

The successive approximations algorithm is particularly interesting at 

this point because of the insight it provides. For example, an economic 

definition of the prices is given by Step 3 of the successive approxi-

mations algorithm. 

SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Estimate initial prices 

c 
At' t = 0, ... , T, 
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c t = 0, T, At' , 
V c 

t = 0, T, At' , 
oc 

t = 0, T, i 0, I, Ait' , 
oh 

t = 0, T, i 0, I, Ait' , = , 
or start with a trial policy at step 3. 

2. Maximize 

f 7t /-f.(t,e.) - y.(t,e.) 
t=O J J J J 

3· 

+ I [A~tCC .. (t,e.) + A~htK .. (t,e.)Jj + 7T 1V .(T+l,e.) 
i=O l lJ J l lJ J + J J 

over all 

results 

Calculate 

c 
At = 

oc 
Ajt = 

e. E ® .' Repeat for 
J J 

h e .. 
J 

new prices according to 
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j 1, ... , J. Call the 

the relations 

t = 0, .•• , T , 

t 0,. .. , T , 

t 0, ... , T , 

i 0, , I 
t = 0, , T 

i = 0, , I 
t 0, , T 



where 
J n 
~ c. (t, er:) x - , t -

j=l J J 

J -n ~ c.(t,er:) xt = , 
· 1 J J J= 

vn J 
x

t = L ~. (t,er:) , 
· 1 J J J= 

J n ~ c. (t,er:) ~t = , 
· 1 -J J J= 

and 
J 

h
n 

= b K. (t,er:) , t 0, ... , T . -t · 1 -J J J= 

(Note: Ct () and 0t() must be concave+ and differentiable.) 

4. If the new prices equal the prices determined on the previous 

iteration, then the conditions of Theorem II are satisfied 

* is equal to 5!., the optimal installation policy. 

otherwise return to step 2 using the new prices computed 

in step 3. 

The mathematical aspects of this algorithm, including the concavity 

and differentiability requirements are discussed later in this subsection. 

A relaxation coefficient can be used in step 3 of the algorithm. 

Organizational Interpretation 

In this subsection the successive approximations algorithm for 

decomposition of the planning example is interpreted in terms of a 

decentralized organization. The discussion is a more precise version 

+ In other words -c ( ) 
t 

and -Ot e ) must be convex and differentiable. 
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of the introductory discussion of the electrical power system planning 

example in Section 1.3. 

The successive approximations decomposition algorithm can be viewed 

as guidelines for the operation of a decentralized organization designed 

to plan the power system. 

Each maximization in Step 2 of the algorithm can be performed by 

a separate plant manager. According to Step 2 the plant managers should 

maximize "profit." The plant manager's profit is composed of two types 

of cash flows. One type of cash flow results from the fixed operating 

costs, installation cost and terminal value of a plant. The second 

type of cash flow is based on the following prices and resources: 

Price Resource Definition of Resource 

A.
c 
t 

x
t 

reliability capacity in each period 

c 
reliability capacity in each A.t 

x
t 

average 
period 

v 
A.

c v reliability variance of capacity in x 
t t each period 

oc 
operating capacity of each type in A.i t Xit 
each period 

oh 
Kit hourly operating cost of each type A.it 

in each period (hydro energy in each 
period for i := 0). 

Step 2 of the algorithm directs a plant manager to choose the instal-

lation policy for his plant that maximizes the present value of profit 

at the given discount rates. Generally the installation decision 

concerns the size of the plant, but other decisions may be treated. 

In many cases the profit maximizing decision is not to install a plant. 
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The important feature of the plant manager!s task is that given a set 

of prices the plant manager!s decisions are independent of the decisions 

of other managers. 

The prices on the resources are set in step 3 of the algorithm. 

We can view these prices as the responsibility of the system managers. 

Through the prices on the resources) the system managers control the 

allocation of the resources. It is appropriate that the system managers 

set the prices because they have access to the technical knowledge that 

is required. 

Two types of system managers can be defined for this problem. 

A reliability manager and an operating manager can be viewed as setting 

prices on the resources produced by the plant managers in each period. 

The appropriate price on the resource is the marginal value of the 

resources in reducing the costs of satisfying the demand. The system 

managers do not require detailed knowledge of the plant managers 

decisions. The prices can be computed on the basis of the total pro­

duction of resources by the plant managers. There is no point in 

defining a system manager for each resource because of the detailed 

technical information that would need to be communicated among them. 

Computational Advantages 

The computational effectiveness of the decomposition method in 

this example is potentially enormous. For example, consider the number 

of policies that would require evaluation if an unsophisticated direct 

search were attempted. If the planning horizon requires 20 periods 

and 10 alternative installations of plants are possible in each year 
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then 1020 evaluations must be performed. Clearly a direct approach 

is not economic. 

In contrast, each iteration of the successive approximations 

algorithm requires the equivalent of about one evaluation of a policy. 

Thus, many iterations can be performed without approaching the high 

cost of a direct search. Empirical results with other problems indicate 

the number of iterations required is usually much less than ten [6 ]. 

Implementation of the Method 

Implementation is discussed in detail in Section 3.5; however, 

a few comments on implementation are appropriate at this point. 

There are two distinct approaches to implementing the decomposition. 

The first approach is to define actual functions and numerical data 

for the model formulated in Section 3.3. The prices in Step 3 of the 

algorithm can be determined from the effect of perturbations of the 

parameters of the reliability and operating models. The required 

concavity assumptions in the successive approximations algorithm can 

be checked by a sensitivity analysis. 

The other approach to implementation of the decomposition requires 

a detailed model such as the computer simulation model developed for 

the original analysis. If the detailed model is structured along the 

lines of the independent submodels developed in Section 3.3, then the 

resources and prices defined in this section can be used to decompose 

the detailed model. The resulting decomposition is approximate but 

the model used may be more realistic. 

Finally, a combination of the two approaches can be used. For 

example, the analyst might determine a policy by the first approach 
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and then tune the policy on the detailed model. This approach requires 

fewer evaluations of the detailed model than the second approach. 

The advantage of using the detailed model is that interactions 

that are not important enough to treat explicitly through a pricing 

scheme can at least be treated approximately. The disadvantage is 

that if these interactions are significant then the resulting policy 

will be approximate and the required computations will be complicated 

by the "noise" or random effects of these other interactions. 

Price Directive Gradient Algorithm 

Algorithms can be modified very easily in a well-designed computer 

program. Thus, the analyst might initially use his intuition and the 

successive approximations algorithm. If necessary, he would try more 

sophisticated algorithms. 

The price directive gradient algorithrn for the planning example 

is described belo"l'J. 

PRICE DIRECTIVE GRADIENT ALGORITHM: 

1. Guess initial prices, 

2. Maximize 

~ ytj-f.Ct,e.) - y.(t,e.) 
t=O J J J J 

Vv 
+ A.

t
C c . ( t ,e .) + A.tCc. ( t , e .) + A.t

C c . ( t ,e . ) 
J J J J J J 

+ r, [ A. ~~ c. . ( t ,e .) + A. ~~ K. . ( t , e . ) ] I 
i=O J lJ J l lJ J 

+ YT lv.(T+l,e.) 
+ J J 
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over all e. E e .' Repea t for j 
J J 

results n e .. 
J 

1, ... ,J. Call the 

3. a) Maximize 

4. 

over all v 
xt ' xt ' xt · Call the results 

for t = 0, ..• , T. 

b) Maximize 

over all Xit and hit' i = 0, 1, 

results 
n and n Repeat for t Xit hit' 

If 
J 

L c. (t, eX:) n 
t 0, == Xt == · .. 

j=l J J 

J 
v - (t en) -n t 0, .1..1 cj 'j = xt ... 

J=l 

J 
v n) vn '\"\ 

u c.(t,e. = x
t 

t == 0, ... 
j=l J J 

J 

E" c .. (t,e~) n t 0, = Xit · .. 
j=l lJ J 

J n n :s K • . (t,e.) = hit t 0, · .. 
. 1 lJ J J= 

Repeat 

, r. Call the 

= 0, ... , T. 

, T , 

, T , 

, T , 

, T , 

, T , 

then the conditions of Theorem II are satisfied and n 
e j' 

j = 1, ... ,J is the optimal policy. Otherwise, compute 

new prices according to 
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.... ex[x~ .... 
J 

A
C 

A
C r C. (t,e~)J t = 0, · .. , T , 

t t j=l J J 

J 
C C [-n 1: c. ( t , e~) J t , T At = At .... ex x

t 
.... = 0, · .. , 

.~ J J 
J=l 

v 
.~ ~j (t,e~) ] C C [vn t At = At .... ex x

t 
.... = 0, · .. , T , 

J=l 

J t 0, T A
OC 

A
OC .... ex~n .... >: c .. (t,e~) ] · .. , , 

= jt it it ·' .... i lJ J i 0, · .. , T , 
J= 

oh oh J t 0, T 
.... ex[h~t"" r K . . (t,e~)J · .. , , 

Ait = Ait l . 1 lJ J i = 0, ... , T , 
J= 

and return to step 2 (the prices on the left are the new 

prices) . 

Each iteration of the price directive gradient algorithm is more 

difficult than each iteration of the successive approximations algorithm. 

step 3 of the price directive algorithm reQuires the solution of tl'lO 

multi-variable optimization problems to determine the new prices. 

Generally, the solution of these multi .... variable problems reQuires more 

evaluations of the reliability and operating models than determination 

of the prices by perturbations about the current allocations of resources. 

If the operating and reliability models have further special 

structure then the multi-variable optimizations reQuired by the price 

directive algorithm can be simplified. Conceptually it is possible 

to decompose these multi-variable optimization problems although it 

is not clear that any computational advantages would result in this 

case. 
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Bounds 

Upper and lower bounds on the optimal present value of profit are 

useful in the practical application of the algorithms. A set of bounds 

can be written directly using the results of Section 2.2. 

The bounds described below are valid for the price directive 

gradient algorithm in all cases, and for the successive approximations 

algorithm when the relaxation coefficient is set to unity. 

BOUNDS: 

and 

I 
+ )'; (/I.~tC[X·t(e') - X~t] + /I.~ht[h·t(e') - h: t ]} 

- 1 1 - 1 1 1 - 1 
i=O 
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The terms involving 8' are determined in step 2 of the algorithms. 

The terms such as xi are determined in step 3 of the price directive 

algorithm or in step 2 of the previous iteration in the successive 

approximations algorithm. An upper bound is not available on the first 

iteration of the successive approximations algorithm. 

It is difficult to predict whether the optimal solution to the 

planning example lies in a gap. Generally, a numerical example must 

be formulated and solved to resolve this question. 

From a practical point of view, the best approach in complex 

strategic problems is to ignore gaps unless they cause difficulty. 

The upper and lower bounds on the optimal present value of profit 

can be used to determine the importance of a gap. If a gap is signifi­

cant then the computationally less desirable penalty function methods 

can be used. An alternative approach for treating gaps in the planning 

example is developed in the next subsection. 

Intuitively, gaps are most likely to involve the project managers' 

decisions. If the project managers' decisions oscillate between extreme 

alternatives for changes in the resource prices, then the danger exists 

that an intermediate decision is optimal. If this oscillating behavior 

is observed the analyst should investigate the cause of the oscillations. 

The investigation may reveal whether and where penalty function methods 

should be applied. 

A Sequential Decomposition of the Example 

The degree of decomposition implied by the algorithms discussed 
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thus far is fairly complete. Each plant can be viewed as a separate 

entity with the only coordination between plants occurring through 

the iterative adjustment of the prices. Nevertheless, from an overall 

computational point of view it may be more effective to permit some 

direct coordination between certain plants. The sequential decompo-

sition method developed in this subsection permits coordination between 

plants installed in the same year. The speed of convergence is improved 

and the effect of gaps tends to be reduced with the sequential decompo-

sition at the price of less decomposition. 

To formally describe the sequential decomposition vre must redefine 

our decision variable notation. Let 

e~ = a list of plants installed in period ~. 

e an installation policy where 

e = set of installation policies. 

Thus, where we previously defined e. 
J 

as a single plant, the 

term e~ now refers to a list of plants. 

With this new notation our decision problem is to select a policy 

e E e, to maximize 

t~o 7t (Rt - ,~ [f,(t,e,) + Y,(t,e,)] 

T T T 
- Ct ( ~ c,,(t,e,,), L: c~(t,e~), L: ~,,(t,e~)) 

~=O "=0 ~=O 

0t( ~ £.~(t,e~), ~ K~(t,e,,))1 
"=0 ~=O 

+ I'T+l 

T 
:6" V'r(T+l,e~) • 
~=O 
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The se~uential decomposition of this problem can be developed 

using the general method suggested in Section 2.1. Because of the 

notational complexity, we will only outline the development. 

Differentiation of the objective function above with respect 

to e produces T + 1 
'I: 

include terms of the form 

where 

and 

simultaneous e~uations. Each e~uation will 

* 
t 

* xt 1; c'l:(t,e'l:) 
'1:=0 

-* t .J(-

x t 
V c'I:(t, e'l:) L; 

'1:=0 

V-'k 
t V 7,~ 

xt 
)' c (t,e ) . 
.L/ 'I: 'I: 

'1:=0 

We can solve the simultaneous e~uations iteratively if we (1) esti-

mate certain terms, (2) solve for the optimal decisions 
-)E-

e and (3) 

calculate the values of the terms we estimated. If we guess terms of 

the form, 

for t = 0, •.• ,T, then we will develop the same successive approxi-

mations algorithm as before. However, if we guess only those terms 

multiplied by terms such as 

C 
C;-;::;-e c (t, e ) 
Ut7

t 
'I: 'I: 
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where t ~~, and do not guess similar terms where t = ~ then a 

different form of decomposition results. In solving the necessary 

conditions for e we must solve the equations sequentially in the 

order 0,1, ... , T; the solution of the first t - 1 equations 

together with the terms estimated, provide enough information to solve 

the t~h equation independently of the remaining equations. 

The sequential solution of the equations describing the necessary 

conditions can be interpreted in terms of the theory developed in 

Chapter II for non-differentiable functions. A formal algorithm for 

sequentially determining the optimal policy is provided by the following 

modification of the successive approximations algorithm. 

SEQUENTIAL SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Estimate initial prices as in Step 1 of the successive approxi-

mations algorithm, or start with a trial policy at step 3. 

2. Maximize 

~ ~ ~ 

+ C (:8 ct(t,et ), b ct(t,et ), ~t(t,et)) 
~ t=O t=O t=O 

+ r~ Ytl~~ct(t,e~) + ~Ct(t,e~) + ~~~t(t,e~) 
t=~+l 

+ Y: [ ~~~ Cit ( t , e ~) + ~~~ K i ~ ( t , e ~) ] J 
i=O 
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over all for T = O. 

in ascending order of the index 

Repeat for T = 1, ..• , T 

T. Call the results en. 

3. Calculate new prices as in step 3 of the successive approxi-

mations algorithm. 

4. Terminate the algorithm or return to step 2 as in the successive 

approximations algorithm. 

The algorithm can be justified on the basis of a theorem similar 

to Theorem II. Upper and lower bounds are easily developed. A sequential 

price directive algorithm can also be formulated. 

The interpretation of the sequential decomposition in terms of 

a decentralized organization provides some insights. step 2 of the 

algorithm suggests that the operation of the power system in each 

period can be viewed as the operation of separate enterprises. The 

manager of each enterprise has two tasks. His first task is to decide 

on the amount and composition of new capacity to install in his system. 

He receives payment for the system at the end of his period on the 

basis of the amount and prices of resources incorporated in the system 

at that time. His second task is to set the prices on the resources 

he receives from the previous managers at the start of his period. 

The decentralized interpretation of the algorithm emphasizes that 

the installation decisions made in a given year are coordinated directly 

with the operating and reliability models for that same year rather 

than indirectly through prices. Prices are still used to coordinate 

the installation of plants in a particular year with the operating 

models, reliability models, and installation decisions in other years. 

There are two computational advantages to the sequential algorithm. 
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First, convergence will tend to be faster because all of the re~uired 

coordination does not rest on the iterative determination of the prices. 

Secondly, the se~uential algorithm tends to reduce the effect of gaps. 

Gaps can arise because of economies of scale in purchasing new capacity. 

The se~uential algorithm partially balances these economies of scale 

with the diseconomies of scale in operating the system. These compu­

tational advantages are obtained at a slight increase in the computational 

difficulty of step 2 of the algorithm. In problems under uncertainty, 

se~uential decomposition involves other restrictions. 

3.5 Numerical Solution of the Planning Example 

In this section we discuss the solution of a specific numerical 

example of our electrical power system planning problem. This example 

incorporates most of the significant features one would wish to treat 

in the analysis of capacity expansion decisions. 

The example re~uired the development of a series of computer 

routines. The resulting computer program illustrates how problems 

of this type can be organized for solution on a computer. 

The data for this example is from the original analysis of the 

Mexican system [lO]. A summary of the data is included in this section. 

The summary of the data indicates the amount of detail and realism that 

can be incorporated in an analysis of this type. 

The results of this numerical example demonstrate that the decompo­

sition methods developed in this dissertation provide a practical tool 

for the analysis of complex decision problems. The example is carried 

to the point where the convergence and general character of the results 
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are established. Further exercising and analysis would be justified 

for an actual decision problem. 

The Computer Program and Data Assumptions 

The structure of the computer program is described by the simple 

flowchart in Figure 3.10. The program is designed to use both the 

standard and the se~uential versions of the successive approximations 

algorithm. After some initialization calculations are performed an 

initial installation policy is provided to the program. This initial 

policy determines a flow of resources. The initial set of prices is 

calculated by the price routine at the resource levels determined by 

the initial policy. The decision routine then scans a list of possible 

installations for each period in the analysis. Based on the current 

prices of the resources, the best installation decisions are made. 

Finally, the current results are displayed and the program returns to 

the price routine to start another iteration. The use of a time-shared 

computer system permits the analyst to interact with the program to 

change parameters and terminate the run at any point. 

The price routine performs the operations necessary to calculate 

the first derivative of the variable operating cost and reliability 

cost functions with respect to the resources. The differentiation 

is performed numerically by making small perturbations of the resources 

about a given level. The price routine calls on a reliability routine 

and a variable operating cost routine in calculating the prices. 

The reliability routine is programmed to perform the calculations 

described in the formulation of the problem in Section 3.2. All of the 
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required integrations are performed numerically. The reliability model 

requires the specification of a functional form for the probability 

distribution on available capacity. The results for both the Weibull 

and Gamma families were essentially equivalent and close to the results 

of the original analysis in terms of expected energy loss per year. 

A price of 80 u.s. cents per kWh of energy loss was used to convert 

expected energy loss to an economic measure of reliability.+ 

The variable operating cost model is also programmed to perform 

the calculations described in Section 3.3. In this example the instal-

lation of new hydro capacity is not considered because very few economic 

hydro sites remain undeveloped in Mexico. Thus, the hydro energy may 

be allocated independently of changes in the expansion policy. The 

program performs the allocation of hydro energy in the initialization 

routine of the program. Stochastic variations in hydro energy are 

not treated in this example, but could easily be introduced in a fU.ll-

scale example. A deficit charge of 20 mills per kWh is assigned to 

energy deficits that occur when the energy requirements exceed the 

available energy from all plants in the system. 

The reliability and operating models operate on an annual basis. 

The scheduling of maintenance and the seasonal variations in demand 

are not treated in this example. A first order correction for the 

effect of maintenance is incorporated by multiplying the available capacity 

of each plant by the fraction of total operating time required by 

+ All data in this analysis was converted to U.S. dollars at the official 
exchange rate of 12.5 pesos per dollar. The data is expressed in 1969 
dollars. 



routine maintenance. In the operating models the available capacity 

replaces the nameplate capacity in order to account for the effects 

of outages on variable operating cost. 

The operating and reliability models reQuire a load duration 

curve. The program stores the load duration curve in the form of 

a table. The load duration curve is computed from historical demand 

data on the Mexican system. The load factor is 0.605. The load duration 

curve is rescaled to account for growth in demand. The energy reQuire­

ments for each year are provided as data. The growth rate is not constant 

but averages about 8.5 per cent per year. To reduce the number of inte­

grations reQuired in the operating and reliability model the integrated 

load curve is calculated in the initialization routine. Short-term 

uncertainty in demand was not incorporated in the load duration curve 

for this numerical example. 

The decision routine generates a new policy on the basis of the 

current prices on the resources. The routine is designed to operate 

on either the standard or seQuential successive approximations algorithm. 

At this level, the only significant difference between the two versions 

of the algorithm is that the seQuential algorithm calls on the operating 

and reliability models to evaluate plants. The calculations performed 

by the decision routine are described in Step 2 of the algorithms. 

Some economies in the calculations are possible when the resources 

describing the plants do not vary over specified intervals of time. 

In this example a plant is uniQuely identified by its type, 

nameplate capacity, and date of installation. Plants are installed 

from a catalog. The catalog specifies the combinations of plants 
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that can be installed in each year. The catalog is necessary only for 

the se~uential algorithm, although, it can be used for the nonse~uential 

algorithm. Table 3.1 summarizes the catalog used in the numerical 

example. The catalog can easily be modified to add new combinations 

of plants. In each period the decision routine chooses the !!best" 

plant in the catalog. 

The installation cost and fixed operating costs of the plants 

are summarized in Table 3.2. The installation cost is expressed as 

a discounted cash flow. The effects of financing, inflation and interest 

during construction are included in the discounted cash flow. Both 

the installation cost and the fixed operating cost for nuclear and thermal, 

display some economies of scale (decreasing average cost per MW as a 

function of size). The larger gas turbines are composed of a number 

of smaller units. Thus, the costs of gas turbines are approximately 

linear as a function of size. The trend in the installation costs is 

a decrease of 1 per cent per year for nuclear and gas turbine plants 

and a decrease of 0.6 per cent per year for thermal plants. 

The resources or parameters describing the plants are calculated 

from the data in Table 3.3 according to the models described in Section 

3.2. The failure probability of nuclear and thermal plants increases 

with size. During the break-in period of two years, the failure proba­

bility of nuclear and thermal plants is twice the normal value. In 

calculating the resources, the approximations for maintenance and the 

effect of reliability on operating cost are included. The trend in 

the fuel prices is a decrease of 1.7 per cent per year for nuclear and 

a decrease of 2.5 per cent per year for thermal and gas turbines. 
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Table 3.1 

CATALOG OF INSTALLATION ALTERNATIVES FOR EACH YEAR 

Plant Capacity (MW) 

catalog No. Nuclear Thermal Gas Turbine 

1 

2 500 

3 750 

4 1000 

5 300 

6 500 

7 750 

8 1000 

9 150 

10 300 

11 500 

12 1000 150 

13 1000 300 

14 1000 500 

15 500 150 

16 1000 150 

17 1000 300 

18 500 150 

19 500 300 

20 500 500 
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Table 3.2 

PLANT COST DATA 

Present Value of Annual Fixed 
Size Type Installation Cost Operating Cost 

MW Millions Millions Per Year 

500 Nuclear 95.4 1.64 

750 Nuclear 129.0 1.84 

1000 Nuclear 162.6 2.04 

300 Thermal 28.1 0·75 

500 Thermal 38.4 0·96 

750 Thermal 55.1 1.20 

1000 Thermal 76.0 1.44 

150 Gas Turbine 10.1 0.24 

300 Gas Turbine 20.2 0.48 

500 Gas Turbine 33.8 0·72 
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Table 3·3 

PARAMETERS OF PLANT MODELS 

Plant Failure Maintenance Variable + 
Size Type Probability Time Operating Cost 

MW Per Cent Months/Year mills/kwh 

500 Nuclear 4.0 1.0 1.35 

750 Nuclear 4.8 1.0 1.30 

1000 Nuclear 5·3 1.0 1.26 

300 Cony. Thermal 3·0 0·5 3·13 

500 Cony. Thermal 4.0 0.5 3·11 

750 Cony. Thermal 4.8 0.5 3.08 

1000 Cony. Thermal 5.3 0.5 2·95 

150 Gas Turbine 1.0 0 4·95 

300 Gas Turbine 1.0 0 4·95 

300 Gas Turbine 1.0 0 4·95 

+ The variable operating cost is for 1969. The fossil fuel price is 
33 cents per million Btu. The nominal trend in fuel prices is -1.7 
per cent per year for nuclear fuel and -2.5 per cent per year for 
fossil fuel (conv. thermal and gas turbine). 
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The terminal values of the plants are assigned on the basis of 

their ages at the horizon and the installation cost of the plant. The 

terminal value model can be visualized in terms of selling the assests 

of the system to a hypothetical buyer at the horizon. In determining 

the terminal value, nuclear and thermal plants are assumed to last 

for 60 years and gas turbines for 40 years. The value of the plant 

is assumed to decrease linearly with age. For example, if a nuclear 

plant is 15 years old at the horizon, then 45/60th 
of the installation 

cost is assigned as the terminal value. The accuracy of this terminal 

value model can be tested by extending the horizon year. 

The discount rate reflects the time preference of the decision 

makers. In this example the discount rate is 6.5 per cent per year. 

In assigning the prices and trends in prices the general inflation 

rate is factored out. In computing the effect of financing an inflation 

rate of 2.5 per cent per year is assumed. In actual (inflated) currency 

the equivalent discount rate is approximately 9 per cent. 

The example assumes a six year lead time between the time a decision 

is made and the first operation of the plant. Assuming the first decision 

is made in 1969 then the first year of operation of this plant is 1975.+ 

The model is capable of simulating the operation and expansion of the 

system through the year 2000, or longer, if necessary, although the 

numerical examples were run through the year 1985. 

The initial system in 1974 provides the starting point for our 

+ Actually, the required lead time is considerably shorter for some 
plants, particularly gas turbines. In a deterministic model the length 
of the lead time has no effect because thereis no uncertainty to be 
resolved in this period. 



analysis. The initial system is described by the total resources 

implied by the plants installed in the system in 1974. Table 3.4 

summarizes the basic data from which the initial resources were calcu-

lated. 

The hydro system is not affected by the decisions considered in 

this example. The initial peak hydro capacity is 4056 MW. The energy 

available from these units is 15 X 106 MWh per year. 

The example was programmed on the General Electric Mark II Time-

sharing Service. The budget for computer time amounted to $1500.00 

including the example in Chapter v.+ In a full-scale analysis a rea-

sonable computer budget would be at least an order of magnitude larger. 

Furthermore, several man-years of effort expended in careful gathering 

of data and constructing models would be reasonable in view of the 

magnitude of the economic resources involved in power system planning. 

Results of the Numerical Example 

The results of the numerical example are presented in Table 3.5. 

The initial policy is based on the results of the original analysis. 

The optimal policy was achieved in three iterations. Two additional 

iterations were made to demonstrate that the algorithm had converged. 

The present value of the initial policy is 1192.4 million dollars 

versus 1194.2 million dollars for the optimal policy. Actually, only 

differences in the present value are significant in this example. The 

improvement in present value between the initial and optimal policies 

+ Each iteration of the example costs approximately $5.00. Thus, if 
convergence is achieved in 6 iterations, then the cost of a complete 
run is approximately $30.00. The major expense is in programming and 
debugging the computer program. 
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Table 3.4 

THE MEXICAN SYSTEM IN 1974+ 

Variable Maintenance 
Number Failure Operating Months 

of Size Probability Cost Per 
Plants MW Type Per Cent mills/kwh Year 

1 27 Conv. Thermal 1.5 4·72 0·5 

3 39 Conv. Thermal 1.5 3·46 0·5 

2 40 Conv. Thermal 1.5 4.12 0.5 

1 10 Conv. Thermal 1.5 4.72 0·5 

1 5 Conv. Thermal 1.5 4.72 0.5 

6 150 Conv. Thermal 3·0 3·36 0·5 

2 33 Conv. Thermal 1.5 3.66 0·5 

2 80 Conv. Thermal 1.5 3.66 0·5 

1 300 Conv. Thermal 3.0 3·13 0.5 

6 24 Gas Turbine 1.0 5.28 

41 30 Hydro 1.0 

4 52 Hydro 1.0 

10 180 Hydro 1.0 

4 75 Hydro 1.0 

3 156 Hydro 1.0 

+ Total capacity is 5755 MW in 1974. 
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Table 3.5 

RESULTS OF THE :NUMERICAL EXAMPLE 

Installations from catal0g+ 

Iteration: 
Year Initial 

Installed Policy 1st 2nd 3rd 4th 5th 

1975 6 1 1 1 1 1 

1976 2 6 9 10 10 10 

1977 6 11 15 15 15 15 

t; 1978 18 15 15 15 15 15 
\.0 

1979 10 15 15 15 15 15 

1980 13 14 15 15 15 15 

1981 11 14 15 11 11 11 

1982 11 14 15 15 15 15 

1983 13 14 14 14 14 14 

1984 11 1 11 15 15 15 

1985 13 1 14 14 14 14 

Present Value 1192.4 1191.3 1190.8 1194.2 1194·2 1194.2 in Millions 

+ See Table 3.1 for definition of catalog. 



is 1.8 million dollars. This difference is extremely small compared 

to the magnitude of the investments involved in power system planning 

(a 1000 MW nuclear plant costs approximately 180 million dollars with 

the initial fuel load). 

The relatively small differences in present value among the policies 

generated by the algorithm occurs for three reasons. First, the initial 

policy was assigned on the basis of insight developed during the original 

analysis. In another power system, the insight of the analyst might 

not be as well developed. As an illustration, Table 3.6 presents the 

results of the algorithm starting from a less desirable policy. The 

algorithm does not converge as Quickly as before. Nevertheless, the 

optimal policy is achieved. 

A second reason for the relative insensitivity of the present 

value to the policy is important from a practical point of view. The 

unconstrained formulation+ of the model balances considerations of 

capital cost, operating costs, reliability, timing of installations, 

etc., on an economic basis. In a broad region surrounding the optimal 

policy these considerations tend to balance out. Thus, for example, 

the improvement in operating costs and reliability charges resulting 

from early installation of a plant is approximately balanced by the 

effect of discounting on the earlier payment of capital costs. The 

practical value of the insensitivity to the policy is that other con-

siderations not explicitly treated by the model often can be incorporated 

into the policy without affecting the present value index. 

-1- A constraint on the amount of reserve capacity or on the probability 
of load loss, for example, would eliminate trade-offs between reliability 
and other costs. 

140 



Table 3.6 

SENSITIVITY OF RESULTS TO INITIAL POLICY 

Installations from catalOg+ 

Iteration: 
Year Initial 

Installed Policy lst 2nd 3rd 4th 5th 6th 7th 8th 

1975 5 20 l l II l l l l 

1976 2 20 6 9 6 9 lO lO lO 

1977 6 20 II l5 II l5 l5 l5 l5 

1978 2 20 l5 l5 l5 l5 l5 l5 l5 

~ 
1979 lO 20 7 l5 l5 l5 l5 l5 l5 

l-' 
1980 3 20 7 l5 l5 l5 l5 l5 l5 

1981 II l4 l7 l5 II l4 II II II 

1982 II l4 l7 l5 6 II l5 l5 l5 

1983 l3 l7 l4 l4 l5 II l4 l4 l4 

1984 II II l II 7 7 l5 l5 l5 

1985 l3 l II l4 l4 l4 l4 l4 l4 

Present Value ll8l.2 lu6.2 ll88.5 ll90.82 ll86.6 ll93.4 ll94.2 ll94.2 ll94.2 in Millions 

+ See Table 3.l for definition of catalog. 



The third reason for the relative insensitivity to the policy 

also has practical importance. In a rapidly growing electrical system 

such as the Mexican system, major new installations are re~uired at 

fre~uent intervals. The new installations provide opportunities to 

change the character of the system and to compensate for any undesirable 

effects of past decisions. The opportunity to dynamically plan the 

system is particularly important under uncertainty. The net effect 

is that uncertainty is not very important in a rapidly growing system. 

In Chapter V we consider power system planning under uncertainty in 

detail. 

Some features of the optimal policy are summarized in Table 3.7. 

One significant feature of the policy is the relatively low reserve 

capacity in certain periods. In the original analysis capacity reserves 

on the order of 15 per cent of peak demand were found necessary. The 

load duration curves used in this example do not incorporate the adjust­

ment for short-term uncertainty in demand that was suggested in the 

formulation of the reliability model. Since the original analysis 

incorporated short-term uncertainty, the difference in reserves between 

the two analyses is apparently the re~uired correction for short-term 

uncertainty in demand. The results of the example still provide a 

valid demonstration of the decomposition approach. However, the model 

and the data must be tuned-up before the results can have policy impli­

cations for the Mexican system. 

Another characteristic of the optimal policy is that nuclear plants 

are not installed until 1983. In the original analysis, the differences 

between nuclear and thermal expansion plans in the 1975-1980 period 
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Table 3.7 

FEATURES OF THE OPTIMAL POLICY 

Peak Installed Reserve Hydro Nuclear Thermal Gas Turbine 
Demand Capacity Capacity Capacity capacity Capacity capacity 

Year MW MW Per Cent MW MW MW MW 

1975 5,297 5,755 9 4056 1615 84 

1976 5,761 6,055 5 4056 1615 384 

1977 6,233 6,705 7·5 4056 2115 534 

1978 6,758 7,355 9 4056 2615 684 

~ 1979 7,325 8,005 9 4056 3115 834 
'vJ 

1980 7,936 6,655 9 4056 3615 984 

1981 8,600 9,155 6.5 4056 3615 1484 

1982 9,311 9,805 5 4056 4115 1634 

1983 10,084 11,305 12 4056 1000 4115 2134 

1984 10,920 11,955 9·5 4056 1000 4615 2284 

1985 11,826 13,455 13·5 4056 2000 4615 2784 



were small. The fact that no nuclear plants were installed in the 

optimal policy in this example may be attributed to small differences 

in the models, such as the neglect of uncertainty in hydro energy. 

Nevertheless, the effect is small as is evidenced by the small difference 

between the present value of the initial policy in Table 3.5 that 

installs nuclear capacity in 1976 and the present value of the optimal 

policy that installs no nuclear capacity until 1983. 

It is interesting to demonstrate the algorithm in a situation 

that is favorable to nuclear power. Table 3.8 presents the results 

of an example where the trend in nuclear fuel price is a decrease of 

10 per cent per year (from 1969) rather than the nominal decrease of 

1.7 per cent per year used in the previous examples. Although this 

example is extreme, the results are intuitive. The best strategy is 

to install nuclear capacity as quickly as possible in order to achieve 

the operating cost savings. 

We can obtain further insight by examining the prices on the 

resources produced by a policy. Table 3.9 contains the prices assigned 

to each resource produced by the optimal policy in Table 3.5. It 

is sometimes difficult to interpret the prices because each price is 

determined by the interaction of almost 100 resources! Furthermore, 

the magnitude of the resources depend on the units used to describe 

the resources. Nevertheless, the pattern of prices over time provides 

some insight. 

The first three resources referred to in Table 3.9 concern the 

reliability of the system. The most important of these is the capacity 

resource. The price on capacity hovers around 7.0 X 10-3 except in 
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Table 3.8 

SENSITIVITY TO :NUCLEAR FUEL PRICE TREND 

Installations from CatalOg+ 

Iteration: 
Year Initial 

Installed Policy 1st 2nd 3rd 4th 5th 6th 7th 

1975 6 14 1 1 4 4 4 4 

1976 2 14 10 9 4 4 4 4 

1977 6 14 15 3 1 1 1 1 

1978 18 14 15 12 3 3 3 3 

~ 
1979 10 14 14 4 9 9 9 9 

Vi 
1980 13 14 14 3 3 3 3 3 

1981 18 14 14 11 11 11 11 11 

1982 10 14 14 4 13 13 13 13 

1983 13 14 14 19 11 11 11 11 

1984 11 11 1 19 13 14 14 14 

1985 13 4 3 3 3 3 3 3 

Present Value 1223·9 1130.4 1244·9 1283.6 1306.3 1306.5 1306.5 1306.5 in Millions 

+ See Table 3.1 for definition of catalog. 



Table 3.9 

PRICES ON ~rlE RESOultCES OF THE OPTIMAL POLICY 

Gas 
Variance Nuclear Thermal Gas Turbine 

Resource: Reliability Average of Nuclear Operating Thermal Operating Turbine Operating 
Year Capacity capacity capacity capacity Cost capacity Cost capacity Cost 

x10-3 x10-3 x10-5 x10-2 Xl0-3 xl0-2 x10+3 x10 -2 x10+3 

1975 2.08 2.71 -6.70 2.59 -7.87 2.46 -7·16 0.0 0.0 

1976 7.88 -56.02 -12.13 22.19 -137·18 4.73 -7·34 1.61 -3·21 

1977 7.21 3.58 -10.39 2.52 -8.23 2.42 -7·13 0.006 -118.88 
~ 
0\ 1978 7.34 4.40 -9. 23 2.51 -8.76 2.22 -6.58 0.008 -174.81 

1979 6.74 4.10 -7.83 2.60 -9·71 2.09 -6.20 0.013 -264.05 

1980 7.14 3·33 -7·57 2.89 -12.30 2.01 -5·98 0.023 -467·75 

1981 9.28 -25.05 -8.87 6.30 -36.88 2.26 -6.41 0.091 -18.39 

1982 13.83 -5.53 -10.01 7·74 -47·86 2.21 -6.24 0.113 -22.68 

1983 7·27 5.17 -5.30 2.20 -7. 29 1.94 -5.49 0.070 -14.11 

1984 11.25 1.45 -6.51 2.19 -7·39 1.95 -5.53 0.098 -19.86 

1985 5.49 4.37 -3·59 2.08 -6·94 1·75 -4.93 0.075 -15.31 



the years 1975, 1982, and 1984. In 1975 the price is relatively low 

indicating an excess of capacity. In 1982 and 1984 the price is rela­

tively high indicating a slight shortage of capacity. 

The prices on average capacity and variance of capacity are more 

difficult to intuit. Generally, the variance of capacity is an unde­

sirable resource and has a negative price. Average capacity is usually 

a desirable resource with a positive price. In 1976, 1981, and 1982, 

the years with the smallest reserve capacity, the average capacity has 

a negative price. On the surface this appears strange. However, the 

reliability resources interact in a very complicated manner which is 

difficult to describe in a simple way. 

The remaining six prices are assigned to the operating resources: 

two for each type of plant. The prices assigned to operating capacity 

are positive while the prices assigned to total hourly operating cost 

are negative. The price assigned to gas turbine capacity is relatively 

small, since gas turbines are primarily installed for reliability. 

The prices or nuclear capacity generally increase over time until 

nuclear capacity is actually installed in 1983. 

A relaxation coefficient of 0.5 was used in all of the examples. 

Unfortunately, the budget for computer time did not permit a detailed 

investigation of the effects of changing the relaxation coefficient. 

The algorithm did not appear to converge when the relaxation coefficient 

was set to unity. 

Once the algorithm had converged on a policy the relaxation coeffi­

cient was set to 1.0 for the final iteration. The conditions of the 

optimality theorem (Theorem II) are not formally satisfied unless the 



prices on successive iterations are identical. The use of a relaxation 

coefficient prevented the easy calculation of upper bounds on the 

present value. 

The results of this example are optimal only if the operating 

and reliability models are concave. This assumption was not verified 

quantitatively. Intuitively there is no reason to suspect the condition 

is not satisfied, at least in the region of the optimal policy. In 

a full-scale analysis the price directive gradient algorithm could be 

implemented to check this assumption. The price directive algorithm 

does require concavity of the operating and reliability models. An 

advantage of the price directive algorithm is that upper bounds could 

be easily computed for this example. A disadvantage is that the price 

directive algorithm is more expensive to implement and operate. 

3.6 Conclusions Based on the Model 

The results of this numerical example of electrical power system 

planning clearly demonstrate the practical value of the methodology 

developed in this dissertation. Naturally, the decision to apply the 

methodology to another power system problem should receive careful 

consideration. On the negative side, the analyst is not, apriori, 

guaranteed that the methodology will solve his problem. Gaps and 

convergence difficulties may present overwhelming problems in some 

power system problems. 

On the positive side, the methodology requires no restrictive 

assumptions of the model. If the methodology is used and a solution 

cannot be obtained because of gaps or convergence difficulties, then 

the model of the system is still useful. Heuristic or other optimization 
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techniQues could be applied at this point. When gaps and convergence 

are not problems, then the methodology is far more powerful than any 

other approach. 

3.7 Possible Extensions of the Model 

We have already mentioned several areas where assumptions in the 

electrical power system model can be relaxed without affecting the 

method of solution or the structure of the model. In this subsection 

we discuss alternative ways of formulating electrical power system 

problems. A full-scale application of the methods of this dissertation 

to a power system planning problem would afford the opportunity to 

reconsider the scope of the model. 

An interesting and possibly valuable extension of the model is 

to relax the assumption of a point system. Relaxation of this assumption 

would allow explicit consideration of transmission, system stability, 

and area protection effects. In terms of the decomposition approach, 

the system could be represented as several geographically separate, 

but interconnected, systems. The separate systems could be viewed as 

buying and selling power to each other. By carefully structuring the 

model describing the whole interconnected system, it should be possible 

to apply the methods of this dissertation. The result might be a set 

of prices that would coordinate the allocation of resources among the 

interconnected systems. Without first formulating such a model it is 

difficult to sepeculate on the exact form the prices, resources, and 

resource markets might take. 

Another extension along the same lines is the explicit treatment 

of plant siting effects. In addition to the transmission, system 
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stability, and area protection effects, plant siting is important in 

terms of local economic and environmental conditions. For example, 

a full-scale model might take into account the transportation costs 

of fuel, or the availability of cooling water at a particular location. 

The social benefits and costs of the ecological effects of power plants 

in various locations could be considered. This extension of the model 

would be particularly important for power systems in industrially 

advanced nations, where the environment is an important consideration. 

At a higher level, the methodology can be applied to the planning 

of a decentralized, nation-wide power system. In the United states, 

the ultimate responsibility for the operation of power systems rests 

with the regulatory agencies. These agencies are sometimes viewed 

as delegating certain decisions to private and public power system 

managers. The decisions of the power system managers are subject to 

guidelines set by the regulatory agencies. 

If a model of the nationwide system could be structured (not solved 

numerically) then it may be possible to identify methods for decomposing 

the model. The decomposition of the model would suggest ways of decen­

tralizing and regulating nation-wide power systems. 
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CHAPTER IV 

DECOMPOSITION UNDER UNCERTAINTY 

The mathematical fundamentals of decomposition under uncertainty 

are developed in this chapter. The general outline of this chapter 

is similar to Chapter II where the mathematical fundamentals are 

developed for deterministic problems. It is significant that the 

decomposition of problems under uncertainty requires exactly the same 

mathematical tools as the decomposition of deterministic problems. 

Problems with separable objective functions are treated in Section 

4.1. This class of problems includes problems where the objective is 

to maximize the expected present value of profit. 

The analysis is extended in Section 4.2 to problems with arbitrary 

objective functions. In this class of problems are problems where a 

multi-attribute risk preference function (a von Neuman-Morgenstern 

utility function) describes the preferences of the decision maker. 

In our development of the mathematical foundations of decomposition 

we shall classify problems as either open-loop or closed-loop decision 

problems. In an open-loop decision problem the decision maker must 

irrevocably allocate his resources before the uncertainty is revealed. 

In a closed-loop decision problem the decision maker has the opportunity 

to adjust the allocation of his resources depending on how the uncertainty 

is resolved. In some cases the uncertainty is slowly resolved over time 

and the decision maker can respond dynamically to the new information. 

The extreme case of perfect information is where all the uncertainty 
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is resolved before a decision is made. Another extreme case of closed­

loop decision making is the open-loop case described above where none 

of the uncertainty is resolved before a decision is made. 

In this chapter, the mathematical foundations of decomposition 

are developed for the general closed-loop decision problem which includes 

all other classes of decision problems as special cases. For some 

extreme cases of closed-loop decision making the results are relatively 

easy to implement. In the most general cases, specialized computational 

techniQues or approximation methods are useful. Computational methods 

for decomposition under uncertainty are discussed in Section 4.3. 

In passing we should note that the introduction of uncertainty 

greatly increases the computational difficulties associated with opti­

mization. The results of this chapter permit more generality than is 

often reQuired in practical problems. Uncertainty should be treated 

explicitly only vThere sensitivity analysis indicates that an important 

decision is sensitive to changes in a state variable. 

4.1 Problems under Uncertainty with Separable Objective Functions 

In this chapter problems involving both time and uncertainty are 

considered. 

The treatment of time in this section builds on the results of 

Section 2.2. These results are applied to the electrical power system 

problem involving time in Chapter III. Problems involving time are 

treated by considering flows of resources where the flow of a resource 

in each discrete period is viewed as a separate resource. Resources 

are similarly defined in this chapter in terms of their physical charac­

teristics and the time period. 
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The notation used in this chapter is extremely general. Few 

problems re~uire the level of generality implied by the notation. 

However, the generality of the notation actually reduces the notational 

problems because many special cases that do not prevent decomposition 

are not explicitly recognized by the notation. 

The Example 

The example concerns the selection of a policy to maximize the 

expected present value of profit associated with a very general resource 

allocation problem under uncertainty. The notation is a straightforward 

extension of the notation developed in Section 2.2 for problems under 

certainty. 

Let 

s 

e
t

. (s) 
J -

_ the vector of uncertain state variables whose uncer-

tainty is usually viewed as being resolved at the 

end of period t. The components of 

need to be defined at this point. 

s, 
-"t 

do not 

= the matrix of uncertain state variables where 

~ == (~, ... , ~) • 

_ the decision variable associated with the jth project 

in period t. For example, etj is usually 

viewed as being set at the start of period t 

when the state variables ~, ... , ~t-l' have 

are still been resolved and ~t' ~t+l' ... , ~T 

uncertain. However, the notation is intended 

to allow e
tj 

to depend on any subset of the 
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e. (s) 
-J -

uncertain state variables that are resolved 

when is set. 

= the vector of decision variables (a policy) associ­

ated with the jth project where 

e . (s) = (eO' ( s) , 
-J - J -

, eT·(s)) • 
J -

= the matrix of all decision variables (a policy) 

where 

~(~) = (~l(~)' ... , ~(~)) . 

Xtjk(~(~)'~) - amount of the kth resource used by the jth project 

in period t as a function of the policy and 

the uncertain state variables. This function 

is given by a detailed structural model of the 

project. For example, Xtjk might be a function 

and ~, '" , ~t' but 

not a function of 2t+l(~)' ... , 3r(~) and 

~t+l' ... , ~T' The resource Xtjk is assumed 

to flow from the resource market to the .th 
J 

project at the end of period t. 

(e()) th t f d b th .th . t 
~tj _ ~,~ = e vec or 0 resources use y e J proJec 

in period t where 

~tk(~(~)'~) = the vector describing the allocation of the kth 

resource in period t among the J projects 

where 
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~(~(~) ,~) 

Ytk(~(~)'~) 

= the 3-dimensional matrix of resource allocations. 

th = total amount of the k resource used in period 

t by all J projects. Thus, 

= the vector of the total amounts of resources employed 

in period t by all J projects where 

It(~(~)'~) =(Ytl(~(~)'~)' 

l(~(~) ,~) _ the matrix of the total amounts of resources employed 

by all proj ects. 

= total revenue in period t from all J projects 

as a function of the policy ~(~) and the uncertain 

state variables s. Generally, 

where rtj(~(~)'~) is the revenue attributed 

t th . th . t· . d t o e J proJec ln perlo . 

in the resource markets. Generally, 

where 

K 
L: Ctk(l(~(~)'~)'~) 

k=l 

is the cost attributed to the kth 

resource in period t. 

The example problem is to choose a policy to maximize the expected 

present value of profit. Thus, we maximize 
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f 
s 

over all ~ (~) E ® (~) + where 

Yt = the discount factor associated with period t, 

(~I e} = joint probability distribution on s assigned on the 

basis of the decision maker's prior information 

at t = o. (~I ~} generally describes the environment 

of the problem and is assumed to be independent of 

and ® (~) = set of all available policies (explained below). 

The concept of a policy embodied in the notation ~(~) E®(~) 

is critical to understanding what follows in this chapter. The decision 

variables 8tj(~)' comprising the policy, control the allocations 

of resources. The notation 8
t

.(s) is a convenient way of describing 
J -

the dependence of the decision variables on the uncertain state vari-

abIes. This dependence arises only in closed-loop policies where 

decision variables can be set after the uncertainty in some of the 

state variables has been resolved. The notation 8
t

.(s) does not 
J -

imply that 8tj depends on every component of s. The set 

defines the uncertain state variables that are resolved at the time 

is set 

For example, consider the following three types of policies that 

+ The generalized integration symbol f implies summation when the 
probability distribution is discrete. Integration is implied when 
the probability distribution is continuous. 
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are special cases of closed-loop policies: 

1. Delayed resolution policy (open-loop policy) 

2. Dynamic resolution policy (adaptive policy) 

3. Immediate resolution policy (perfect information policy). 

In a delayed resolution policy, the decision maker sets all of 

the decision variables before any of the uncertain state variables 

are resolved. In this case, e does not depend on any component 

of s. Of course, e still depends on the joint probability distri­

bution on ~, {~I e}, through the optimization. The notation ® (~) 

defines the available policies in a problem. If the analyst wishes 

to consider only delayed resolution policies, then ®(~) is used 

to restrict consideration to policies that do not depend on s. 

The other extreme case concerns the immediate resolution policy 

where all of the decision variables are set after the uncertain state 

variables are resolved. In this case, e depends on all components 

of s. This case is equivalent to parametrically solving the deter­

ministic version of the problem as a function of s. The set ®(~), 

in this cas~ includes only the policies that depend on all components 

of s. 

The dynamic resolution policy is the most interesting case. In 

this case, the decision variables are set on the basis of the decision 

maker's state of information at the time he makes a commitment. The 

decision maker's state of information depends on the structure of the 

information flows in the problem. The set ®(~) specifies the structure 

of these information flows by defining the state variables that are 
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resolved at the time a decision is made. For example, 

a concise way of stating that+ 

0C.:~) is simply 

In this example, etj depends on the conditional distribution, 

through the oPtimization.~ 

Mathematical Results (Theorem IV, Bounds, and Algorithms) 

The following theorem provides sufficient conditions for the 

optimality of a solution to the example formulated in the previous 

subsection. The theorem is analogous to Theorems I and II in Chapter 2. 

* THEOREM IV: If ~ (~) maximizes 

f[~[rt 
K T 

i\tkT(~)y Tk(~(~) ,~) J}~I e } Rt (~(~) ,~) - 2J 
s t=O k=l T::::O 

~(~) 0(~) , 
-1\-

over all E and if Y.. maximizes 

+ The subscripts on ~t and St are useful for describing the problem 
structure. However, only 0(s) defines the structure of the information 
flows. In the dynamic resolution case, 0(s) often defines the same 
information flow structure as is implied by-the subscripts on ~t and ~t' 

~ The value of the notation developed in this chapter becomes evident 
when we try to write a dynamic resolution problem using more conventional 
notation, i. e. , 
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over all y(~), and if 

* for all logically possible values of ~, then ~ (~) maximizes 

Proof: 

a) Interchanging the order of integration and summation in the 

two inequalities implied by the conditions of the theorem results in 

the following two inequalities: 

holds for all ~ (~) E e (~) , and 

, 

J [ ~ y tCt (l(~) '~)Jl {~I e} 
s t=O 

holds for all l(~). 

b) Combining the two inequalities in step a) gives 
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which holds for all ~(~) E e (~) and all l(~)' 

c) Since the ineQuality in Step b) holds for all l(~) it must 

also hold for l(~) = l(~(~) ,~) vrhere ~(~) E e(~). In this case 

the terms involving ~ on the left side of the ineQuality in Step b) 

cancel, and 

holds for all ~ (~) E e (~) . 

d) BY the statement of the theorem 

for all logically possible values of ~. Thus, the terms involving ~ 

on the right side of the ineQuality in Step c) cancel, and 
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holds for all ~(~) E @ (~). Hence the theorem is proved. 

The discussion of Theorem I in Chapter II is also relevant here. 

Like Theorem I, this theorem under uncertainty only provides sufficient 

conditions for an optimal solution. However, the theorem requires no 

restrictive assumptions other than real-valuedness of the functions 

and it is applicable to problems under very complex forms of uncertainty. 

Insight into Theorem IV is developed below and in the following sub-

sections. 

The terms AtkT(~) can be interpreted as prices that depend on 

the vector of uncertain state variables s. The price AtkT(~) is 

th the price assigned to the k resource consumed in period t and 

paid for in period T. The additional subscripts on the prices result 

from simultaneous treatment of multiple resources and time in its most 

general form. The additional subscripts are not due to the introduction 

of uncertainty. 

In the application of the results of this section, an equivalent 

set of prices with only two subscripts can be defined. Let, 

BY rearranging the statement of Theorem IV slightly, we can work with 

prices having only two subscripts. For example, the first maximization 
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problem in Theorem IV becomes: 

maximize 
8(s) E 8(s) - - -

In this form the prices are not multiplied by the discount factors. 

The price ~Tk(~) is interpreted as the price (in present value units) 

th 
assigned to the k resource consumed or produced in period T. The 

choice of which form of the prices to use rests on computational con-

siderations such as the number of storage locations reQuired by the 

computer program. 

The expected present value of profit can be bounded at any stage 

of an iterative search algorithm. The upper and lower bounds for 

problems under uncertainty are analogous to the bounds for deterministic 

problems. The upper bound follows directly from the ineQuality in 

step b) in the proof of Theorem IV. 

BOUNDS: 

Let ~ 1 (~) maximiZe 

over all ~ (~) E 8 (~) and let l.. 1 (~) maximize 

over all l..(~)' Then, 
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The successive approximations algorithm provides an interpretation 

SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Guess an initial 3-dimensional matrix of resource price functions 

or start at Step 3 ,,,i th a trial resource policy 

2. Maximize 

3. Calculate a new 3-dimensional matrix of resource price functions 

4. 

according to the relationships 

t = 0, 

k = 1, 

.... = 0, 

, T , 

, K , 

, T . 

(Note: C
t
() must be convex and differentiable for this 

algorithm. ) 

n+l n 
If ~ (~) = ~ (~) for all logically possible values of ~, 

then the conditions of Theorem IV are satisfied and ~n(~) 

is the optimal policy. Otherwise, return to Step 2 using 

~n+l(~). 
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step 3 of this algorithm implies that the price function ~tkT(~) 

is the marginal cost in the tth period of the kth resource flow in the 

Tth period as a function of the state variable vector s. The function 

~(~) can be viewed as defining a many-to-many change of variables 

from {~I ~ } to {~I e}, the joint probability distribution on the 

prices. A similar change of variables is defined for the conditional 

joint probability distributions at any point in time. However, the 

stochastic process on prices implied by these distributions is usually 

dependent on the stochastic process on the state variables. 

A relaxation version of the algorithm is easily developed. In 

this case, the price functions are calculated in step 3 according to 

the relationship 

The price directive gradient algorithm, with minor modifications, 

also applies to problems under uncertainty. 

PRICE DIRECTIVE GRADIENT ALGORITHM: 

1. Guess an initial 3-dimensional matrix of resource price functions 

2. Maximize 

Call the result 

3. Maximize 
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over all ;;[(~). Call the result ;;[n<.~). 

4. If ;;[n(~) = ~(~n(~),~) for all logically possible values 

of ~, then the conditions of Theorem IV are satisfied 

and ~n(~) is the optimal policy. Otherwise, compute a 

new matrix of resource price functions according to 

and return to step 2. 

Decomposition 

The structural requirements for decomposition under uncertainty 

are similar to the requirements under certainty. If 

J 
Rt(~(~) ,~) - r.L.(e.(sLs) t = 0, T 

. LJ -J - -
J=l 

t 0, T , 
Xtjk(~(~) ,~) = xt 'k(e. (s) ,s) j 1, J , 

J -J - -
k = 1, , K , 

and 

where ~j (~)€ e j (~) but ~j (~) f- e i (~) for i f: j, then decompo­

sition can be achieved. In this case, step 2 of the algorithms becomes 

J independent subproblems, requiring maximization of 

over all e . ( s )€ e. ( s ) . 
-J - J -
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The above result shows that by defining prices it is possible to 

decompose a hard closed-loop problem under uncertainty into several 

easier closed-loop problems under uncertainty.+ These subproblems 

can be solved by a variety of techniques including dynamic programming 

and decision trees. 

Each subproblem requires knowledge of the resource price functions 

and the joint probability distribution on ~~ Even if a particular 

project is deterministic, i.e., 

and 

r
t

. (8. (s) ) 
J -J -

Xt ·1 (8.(s),s) == xt .k (8.(s)) 
J ~ -J - - J -J-

t 

t 0, •.. , T 

0, ... , T, k == 1, ..• , K 

the policy for the project usually is stochastic because the resource 

prices, ~thT(~)' depend on the uncertain state variables, s. 

Organizational Interpretation 

Decomposition under uncertainty can be interpreted in terms of 

a decentralized organization composed of an impresario, project managers, 

and resource managers as defined in Section 2.1. 

The project managers are responsible for maximizing the expected 

present value of profit of their projects. The resources required by 

the project managers are obtained at prices that are given by a stochastic 

process on the uncertain state variables associated with a project. 

+ Often it is possible to arrange things so that the subproblems are 
open-loop problems. Open-loop decision problems are typically much 
easier to analyze than closed-loop decision problems because the decisions 
do not depend on the resolution of the uncertainty. When the subproblems 
are open-loop, the computational advantages of decomposition are consider­
able. 
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In the successive approximations algorithm, the resource manager 

simply computes the marginal cost of the resource as a function of 

s. The marginal cost is computed on the basis of the total resource 

requirements of the projects as a function of s. If s is discrete, 

the computation of prices is made for each value of s. 

Under uncertainty it is possible to hypothesize additional managers 

in the decentralized organization. For example, consider the role of 

the information manager or expert who is responsible for assigning the 

joint probability distribution, {~I €}. Among his alternatives is 

the purchase of additional information by experimentation and research. 

The calculation of the value of information in a decentralized organi­

zation or a decomposed problem is an interesting area for future research. 

One of the objectives of such research might be to carefully define the 

role of the information manager. 

4.2 Problems under Uncertainty with Arbitrary Objective Functions 

In this section we demonstrate that problems under uncertainty 

with arbitrary objective functions can be treated by the methods devel­

oped in this dissertation. We will assume that arbitrary objective 

functions in problems under uncertainty are the result of multi­

attribute risk preference functions. A multi-attribute risk preference 

function can encode both the decision maker1s attitude towards uncertain 

outcomes and his deterministic preferences among multiple measures of 

performance. 

The results of this section complete our development of the mathe­

matical fundamentals of decomposition. Together, these results are 



applicable to the most general resource allocation problem the author 

can conceive. Yet, conceptually, the theory in this section is no 

more difficult than the theory for the separable, single resource 

problems in Section 2.1. 

Introduction to lfulti-Attribute Risk Preference Functions 

A multi-attribute risk preference function is used to encode a 

decision maker's attitude towards the outcome of a resource allocation 

problem under uncertainty. In Section 2.3 ordinal value functions 

were introduced as a means of encoding a decision maker's attitude 

towards multiple deterministic outcomes. In this section we extend 

the introduction in Section 2.3 to problems under uncertainty. 

One method of encoding a multi-attribute risk preference function 

is to encode the decision maker's attitude towards deterministic outcomes 

and then encode his risk preference. The deterministic part of the 

problem results in a set of indifference curves as described in Section 

2.3. If a numerical index is assigned to the indifference curves so 

that the resulting ordinal value function has intuitive meaning, then 

we can encode the decision maker's risk preference in terms of the 

ordinal value function. For example, if the ordinal value function is 

in monetary units we can encode the decision maker's risk preference 

on money. If the ordinal value function is an e~uivalent uniform flow 

of a resource, then we can encode the risk preference function by 

comparing lotteries (probability distributions) on e~uivalent uniform 

flow. 

This two-step approach to the encoding of multi-attribute risk 

preference functions is discussed formally in Boyd [ 5 ], Boyd and 
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Matheson [8 ], Pollard [24], and Raiffa [25]. 

In this section we use the notation 

to denote a multi-attribute risk preference function defined on ~, 

the vector of primary resources. The function u(~) is sometimes 

written as 

u(v(~)) 

to emphasize the intermediate step of encoding an ordinal value function. 

The multi-attribute risk preference function has the property that 

the optimal resource allocation is the allocation that maximizes the 

expected value (expected utility) 

u == f u(~)(~I~} 
s 

where [~I~} - joint probability distribution on the vector of primary 

resources. 

The magnitude of the expected utility resulting from a decision 

problem has little or no intuitive meaning. Hence, the bounds and 

prices to be developed in this section would be difficult to interpret 

in a meaningful way. A measure that does provide insight is the certain 

e'luivalent. 

A certain e'luivalent can be developed in terms of the ordinal value 

function V(). Generally, the ordinal value function is designed so 

that the units of V() have intuitive meaning. If the risk preference 



function defined on V() has a uni~ue inverse+ then the certain 

e~uivalent ordinal value is given by 

"'(-) -1(-) V u = u u 

where U -l(-u) _ inverse of u( ) such that 

uCiT) = u 

The certain e~uivalent has the same units as the ordinal value function. 

For example, an ordinal value function expressed as an e~uivalent 

uniform flow corresponds to a certain e~uivalent uniform flow under 

uncertainty. 

The Example 

The notation describing this example builds upon the notation 

developed in Section 4.1. Let 

= the vector of uncertain state variables whose UBcer-

tainty is resolved at the end of period t. 

s = the matrix of uncertain state variables where 

s = (E.o' •.. , E.T) • 

Q(~) = the decision variables describing a policy. 

Ztk(Q(~),~) - amount of the kth primary resource produced in 

+ u() has a uni~ue inverse if it is monotonic. This condition will 
almost always be satisfied. In any case, the restriction is imposed 
only to provide intuitively meaningful bounds and prices. The results 
of this section can be developed without this monotonicity re~uirement 
by working in terms of expected utility rather than certain e~uivalent. 
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~(~(~) ,~) 

u( 

V( ) 

period t as a function of the policy and the 

uncertain state variables. This function is 

given by a detailed structural model of the problem. 

Often, separate projects can be identified within 

this structure. 

_ the 3-dimensional matrix of primary resources. 

- multi-attribute risk preference (utility) function. 

= certain equivalent value as a function of the expected 

utility. 

The example problem is to maximize the certain equivalent value 

v( f u(~C.~(~) ,~) {~I ~}) 
s 

over all ~ (~) E e (~) where 

{~Ie} _ joint probability density assigned on the basis of the 

decision maker1s prior information e , 
and e(~) - set of all available policies. These policies can be 

characterized as either delayed, dynamic, or immediate 

resolution policies. 

Mathematical Results (Theorem V, Bounds, and Algorithms) 

The following theorem provides sufficient conditions for the 

optimality of a solution to the example formulated in the previous 

subsection: 

* THEOREM V: If ~ (~) maximizes 
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over all 5:(s) E 8 (~) and if ~C.~) maximizes 

for all logically possible values of ~, * then 5: (~) maximizes 

v( I [ u(~(~(~) ,~) ~{~I e }) 

over all ~(~) E 8(~). + 

Proof: 

a) The conditions of the theorem imply the following two ineguali-

ties: 

holds for all 5: (~) E 8 (~) , and 

+ Theorem V also holds if the risk preference function depends directly 
on s, i.e., u(z(e(s),s),s). Generally, problems with uncertain values 
can be reformulate~in terms of a risk preference function that does not 
directly depend on uncertain variables. Pollard [24] provides an intro­
ductory discussion of problems with uncertain values. 
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b) Combining the two inequalities in step a) implies that the 

ine<luality 

holds for all w(~). 

c) Since the ine<luality in Step b) holds for all !(~) it must 

ve f u(~(~C.~) ,~) {~I ~ }) 
s 

d) The theorem statement re<luires that 

hold for all logically possible values of ~. Thus, 

v( l' u(~(E:(~) ,~)) {~l e }) ::: v( f u(~(~* (~) ,~) {~l e"}) 
s s - -

holds for all ~(~) E ®(~). Hence, the theorem is proved. 
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This theorem provides the theoretical basis for transforming a 

difficult problem with a multi-attribute risk preference function 

into an expected value decision problem with a separable objective 

function. The resulting expected value problem can be solved by the 

decomposition methods developed in Section 4.1. 

Upper and lower bounds on the certain e~uivalent value at each 

stage in an iterative solution process are given by the ine~uality 

in Step c) of the proof of Theorem V. 

BOUNDS: 

Let ~'(~) maximize 

over all ~(~) E e(~), and let '!!..' (~) maximize 

over all '!!..(~). Then, 

v£ =: v( J u(z ':J~' (~) ,~)){~I e'}) 
s 

and 

'Vu 
=: v( J u(w' (~) ){~I e}) 

s 

The bounds are expressed in terms of certain e~uivalent value. 

If the problem is stated as one of maximizing utility, then the bounds 

are difficult to interpret. 



The successive approximations algorithm follows from the necessary 

and sufficient conditions for a solution to the second maximization 

problem in the theorem statement. 

SUCCESSIVE APPROXIMATIONS ALGORITHM: 

1. Guess an initial matrix of resource price functions 

or start at Step 3 with a trial resource policy 

2. Maximize 

3. Calculate a new matrix of resource price functions according 

4. 

to the relationship 

where f u(~_(~t(~) 'E.)) (E.I S }. 
s 

(Note: V(u(~)) must be concave and differentiable in z.) 

n+l n 
If ~ (E.) = ~ (E.) for all logically possible values of E., 

then, the conditions of Theorem V are satisfied and ~n(E.) 

is the optimal policy. Otherwise, return to Step 2. 

As in Section 4.~, the operation in Step 3 can be viewed as a many-to­

many change of variables problem from (E.I ~} to (!:::I €}, the joint 

probability distribution on the prices. These distributions, however, 

are dependent. 

The calculation of the prices in Step 3 involves two terms. The 

first term is independent of both s and the indices t and k. The 
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second term can be interpreted as the marginal utility of the kth 

resource flow in the tth period as a function of the state variables 

s. The first term converts the prices from a marginal utility to a 

marginal certain equivalent. 

In the relaxation version of the successive approximations algorithm 

the prices are determined by the relationship 

n+l d --
~tk (s) = a -- V(u) 

- dU - -n 
u=u 

where a is the relaxation coefficient. 

The successive approximations algorithm requires that V(u(~)) 

be concave and differentiable. Most carefully structured problems meet 

this requirement. Thus, there appears to be little practical value 

to the price directive algorithm which does not require the concavity 

and differentiability restrictions. Nevertheless, for completeness 

we will state the price directive gradient algorithm for the problem 

posed in this section. 

PRICE DIRECTIVE GRADIENT ALGORITHM: 

1. Guess an initial matrix of resource price functions 

2. Maximize 

3. Maximize 

v( f u(!(~)) [~I e}) 
s 



of ~, then the conditions of Theorem IV are satisfied 

and ~n(~) . th t· 1 l' lS e op lma po lCY. otherwise, compute 

a new matrix of resource price functions according to 

n+l) n ( ) n) n ~tk (~ = ~tk ~ - a[~ (~ - ~(~ (~),~)] 

and return to step 2. 

The price directive gradient algorithm is derived by applying a 

gradient search to the problem of minimizing the upper bound on the 

certain eQuivalent value. 

Decomposition 

The results of this section show how to decompose the original 

problem into (1) a problem of determining the appropriate price functions 

~tk(~) and (2) the new maximization problem in Step 2 of the algorithms. 

However, the most significant computational advantages arise when we 

take advantage of the separable structure of this new problem. In 

some cases this new problem decomposes directly. If not, we can apply 

the results of Section 4.1 to decompose the new problem. The prices 

~(~) on the primary resources can be determined simultaneously in a 

carefully designed algorithm. Conceptually, we now have the means for 

transforming an extremely difficult closed-loop decision problem under 

uncertainty with complex preferences into the iterative solution of 

a number of simple, open-loop, expected value, decision problems. 

Organizational Interpretation 

The organizational interpretation in Section 4.1 assigned decision 
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making roles to the entrepreneurs and either price setting or decision 

making roles to the resource managers. With arbitrary objective functions, 

the impresario can be viewed as the manager of the primary resources. 

In terms of the successive approximations algorithm the impresario sets 

the prices on the primary resources. 

The impresario can perform his task in two ways. One approach is 

to encode a multi-attribute risk preference function by the methods 

mentioned earlier in this section. An alternative approach is to 

encode the prices directly without explicitly encoding the risk preference 

function. Under uncertainty, however, the assessment demands placed 

on the impresario are great because he must determine the prices for 

every possible value of the state variables. 

4.3 Computational Methods for Decomposition under Uncertainty 

The essential difference between decomposition of deterministic 

problems and decomposition under uncertainty is the problem of deter­

mining the prices as a function of the state variables, i.e., ~(~). 

In problems with complicated probabilistic structures, effective methods 

must be developed for calculating and characterizing the price functions. 

In the most complicated problems, some form of approximation is necessary. 

In this section we outline two general approaches to designing 

computational methods for decomposition under uncertainty. The first 

method is useful in problems where the state variables are discrete 

or can be approximated by discrete variables. This method is based 

on the use of a probability tree to characterize both the probability 

distribution and the prices. 



The second method is useful in problems with continuous variables. 

This method uses a Taylor series approximation to characterize the 

price functions. 

Probability Tree Methods 

Any probabilistic process involving only discrete state variables 

can be visualized in terms of a probability tree. Sometimes processes 

with continuous variables can be approximated by a probability tree. 

Probability trees are particularly useful where the uncertainty con-

cerning state variables is resolved gradually over a number of periods 

in time. 

Figure 4.1 illustrates a simple probability tree. A tree+ is 

composed of nodes and branches. Numerical values associated with a 

tree are called attributes. There are two types of attributes: branch 

attributes and node attributes. An example of a branch attribute is 

the probability of going from the node on the starting (left) end of 

a branch to the node at the terminal (right) end of a branch. An 

example of a node attribute is the numerical value of the state vector 

s assigned to a node. 

The structure of a probability tree together with its attributes 

describe a probabilistic process. When the node attributes are the 

state vectors s and the branch attributes are the appropriate con-

ditional probabilities, then the tree completely describes the probability 

distribution {~le} where e is the state of information at the 

starting node. 

+ Other types of trees include decision trees and value trees. See 
Rousseau [27]. 
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Figure 4.1: A PROBABILITY TREE 
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Expected values of the variables assigned as attributes are 

computed by rolling back the tree in an operation similar to dynamic 

prOgramming.+ For example, the operation 

can be performed by rolling back a probability tree. For a given 

policy 8.(s), the numerical values of x~.k(e.(s),s), rt.(e.(s),s), 
-J - 'J -J - - J -J - -

and the prices ~tk'r(~) are simply attributes of the nodes. 

The optimization in step 2 of the algorithms is performed by 

rolling back a probability tree for each project. In some cases the 

structure of the problem is such that rolling back a single tree will 

provide all of the information necessary to determine the expected 

values for more than one or all of the projects. 

In the successive approximations algorithm the prices can be 

determined by rolling fOri-lard through the tree so that every node is 

reached. As we roll forward we keep track of the resource flows pro-

duced by the projects for the current policy. At each node we compute 

the new prices according to the relationship in step 3 of the algorithm 

and assign them as attributes of the appropriate nodes. 

Very complicated problems can be solved by carefully structuring 

the probability tree and the associated computations. Dr. William 

Rousseau [25 ] has developed a special compiler that greatly simplifies 

+ Raiffa [25] discusses the roll-back procedure for trees. 

~ This expected value operation is required in the decomposed version 
of Step 2 of the algorithms in Section 4.1 
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the task of structuring and manipulating complex trees. An important 

4 5 feature of his compiler is that very large trees with 10 or 10 nodes 

can be handled with minimal storage requirements. In some cases, 

problems under uncertainty require approximately the same amount of 

computer storage as the equivalent deterministic problem. The principle 

limitation on the use of probability tree methods in decomposition 

is the cost of computer processing time. 

Approximation Methods 

Approximation methods provide an alternative to probability tree 

methods as a means of characterizing the prices as functions of the 

uncertain state variables. The basic idea is to approximate the price 

functions by functions that are easier to characterize. 

Considerable ingenuity is often required to devise an approximation 

to a multi-variable function. Usually, special characteristics of 

the function must be exploited in order to develop a useful approxi-

mation. Thus, the approximations are specific to each problem and 

it is difficult to provide general methods for approximating the price 

functions. 

In situations where local information provides a good description 

of a function, approximations based on a Taylor series expansion about 

an operating point are reasonable. This subsection provides a brief 

discussion of Taylor series approximations of the price functions. 

Taylor series methods are unlikely to be useful in the electrical 

power system example because of the discrete nature of the decision 

variables. Hence, we will only outline the development of this approxi-

mation method. 
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Specifically, we will develop a Taylor series approximation for 

the price functions ~(~) re~uired in the successive approximations 

algorithm in Section 4.1.+ An approximation to the price function 

using the first three terms of a Taylor series expansion about the 

operating point o s is given by 

where ~ = (sl' ••• ,sN)' This approximation is exact if ~tk~(~) 

is a ~uadratic or linear function of s. 

When the approximation is valid over the range of s encountered 

in a problem, the coefficients of the Taylor series expansion provide 

all of the information contained in the price function. Given the 

coefficients, the optimization problem in Step 2 of the algorithm can 

be solved. In a computer program, only the coefficients would need 

to be stored between iterations. 

The practical value of Taylor series approximations depends on the 

structure of the problem and the skill of the analyst in choosing an 

appropriate set of coefficients. For large numbers of state variables 

(N large) the number of coefficients is also large. However, the 

structure of a problem will re~uire that some of the coefficients be 

fixed at zero. Furthermore, some of the other coefficients will be 

+ With appropriate changes in notation the discussion also applies to 
problems in Section 4.2 with arbitrary objective functions. 
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small and can be eliminated from the approximation. Sensitivity analysis 

is useful in deciding where to eliminate coefficients. 

By delving more deeply into the structure of a problem we can 

identify methods for calculating the coefficients of the Taylor series 

approximation. In the successive approximations algorithm the price 

functions are given by 

where Ytk(~) = .Z Xtjk(~j (~ ),~ ). + This function must be differ­
J=l 

entiated with respect to the state variables in order to calculate the 

coefficients. For example, the coefficient 

is given by 

T K 
+ '" Lf "'c Lr 

u=O h=l 

o 
s 

:L. d ( '() ) >; -r- x 'h e. s ,s 
.~ as UJ -J 0 
J=l n s 

The first term in the above equation is nonzero only when the 

resource cost function Ct () depends directly on s. The second 

term depends on the sensitivity of the consumption of the resources 

to changes in the state variable s . 
n 

The sensitivity may depend both 

+we assume that the decomposed verstgn of the algorithm applies and 
that e!(s) is the policy for the j project determined in Step 2 

-J -
of the algorithm. 
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on the direct effect of the state variables and on changes in the 

decision policy e:(s) as a function of s • 
-J - n 

The important point to note is that the coefficient can be calcu~ 

lated on the basis of the following data from the projects: 

x "k(e:(sO),sO) u = 'IJ -J - -
0, ... , T 

and 

~ x "h(e:(so,so) h 1, . . . , K . 
s uJ -J - - 0 

n s 

The other coefficients re~uire some of the same terms plus some addi-

tional second order terms for the second order coefficients. Thus, 

we see that a Taylor series approximation provides a simple way to 

characterize the consumption of resources by the projects as a function 

of the state variables. 

Additional computational simplifications are possible, but a 

detailed discussion of them is beyond the scope of this subsection. 

One idea is to describe the probability distribution {~I e} in terms 

of the means and covariances of the distribution. For insight as to 

when this approximation might be useful see Howard [19J on proximal 

decision analysis. Proximal decision analysis could also be applied 

in analyzing the subproblems. The sensitivity information re~uired 

in proximal decision analysis could be used in calculating the coeffi-

cients of the Taylor series approximation to the price functions. 
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CHAPTER V 

ELECTRICAL POWER SYSTEM PLANNING UNDER UNCERTAINTY 

This chapter has two purposes. Its first purpose is to demonstrate 

the practicality of decomposition under uncertainty. Power system 

planning under uncertainty tests the full range of generality provided 

by the methods of Section 4.1. 

The second purpose of this chapter is to evaluate the importance 

of uncertainty in power system planning. An example is developed that 

incorporates uncertainty in nuclear fuel prices. The results of the 

example suggest that other issues are more important than the quanti­

tative analysis of uncertainty in rapidly expanding power systems 

like the Mexican system. 

5.1 The General Problem 

The explicit consideration of uncertainty in a power system planning 

problem is difficult and expensive. Clearly, it is not economic to 

quantitatively treat every uncertain variable. Many variables have 

little effect on the installation decisions. Sometimes, the analytical 

effort is getter spent in capturing other aspects of the problem in 

more detail. 

Sensitivity analysis is useful in deciding whether to explicitly 

treat the uncertainty in a particular variable. In a power system 

problem, the important decision in an installation policy is the first 

decision in time; the other decisions serve only as a background 

policy for the evaluation of the first decision. BY varying the state 
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variables in a deterministic model over the range of the uncertainty, 

we can identify the variables that are critical to the first decision. 

When we choose to explicitly treat the uncertainty in a variable, then 

we call it an aleatory variable to distinguish it from variables whose 

uncertainty is not critical to the first decision. 

Several variables in a power system problem are candidates for 

aleatory variables. Some variables are so obviously important to the 

decision problem that we include them as aleatory variables at an early 

stage in the analysis. The reliability model developed in Chapter III 

provides an example. The available capacity of each plant is an aleatory 

variable. Similarly, uncertainty in hydro energy and short-term uncer­

tainty in demand can be included in the model developed in Chapter III. 

Each of these sources of uncertainty are fundamental to power system 

planning and usually must be included before meaningful results can 

be obtained. 

The remaining candidates for aleatory variables are distinguished 

by the characteristic that their uncertainty is resolved gradually 

over time. For example, we expect our forecasts of demand, fuel prices, 

and capital costs to improve as we approach the period for which the 

forecast is made. 

In a rapidly growing system, small changes in the rate of growth 

of demand and changes in the trends of other variables can produce 

spectacular changes in the size and composition of the power system 

ten years later. When the system growth rate approaches or exceeds 

the discount rate for a period of time, then the present value index 

is extremely sensitive to small changes in the growth rate. This 
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suggests that uncertainty in demand growth, for example, is important. 

However, when uncertainty is resolved gradually over time we are pro-

vided the opportunity to adjust installations decisions dynamically 

in response to the resolution of the uncertainty. In terms of the first 

decision in an installation policy, the net effect is often small. 

In the original analysis of the Mexican system an exhaustive 

sensitivity analysis was performed on the deterministic model. The 

sensitivity analysis was closed-loop so that the installation policy 

could respond to the changes in the state variables. The results of 

the sensitivity analysis suggested that the explicit consideration 

of uncertainty would not change the initial decisions in a policy. 

In the next section we demonstrate decomposition under uncertainty 

in terms of uncertainty in nuclear fuel prices. Nuclear fuel price 

was identified as the most crucial variable in the original analysis 

primarily because of its effect on the timing of the first installation 

of a nuclear Plant.+ The results of the example support the suggestion 

that uncertainty is relatively unimportant in the analysis of installation 

decisions in the Mexican system. 

5.2 A Numerical Example 

In this section we introduce uncertainty into the example formu-

lated in Chapter III. The numerical example discussed in this section 

treats uncertainty in nuclear fuel prices. The example does not provide 

+ Actually, the relative price of nuclear fuel to thermal fuel is the 
important Quantity. For our purposes, we can view forecasts of nuclear 
fuel prices as conditional forecasts based on known thermal fuel prices. 
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a complete analysis of uncertainty in the power system problem. The 

purpose of the example is simply to demonstrate decomposition under 

uncertainty. 

Probabilistic Model of Nuclear Fuel Prices 

The first task in introducing an aleatory variable into a model 

is to develop a probabilistic model of the variable. Probabilistic 

models of processes evolving over time are difficult to construct. 

There is no point in developing a more detailed model than is economic 

in terms of the first decision in a policy. The model developed in 

this subsection incorporates a level of detail appropriate to a pilot 

or first-cut analysis of uncertainty in nuclear fuel prices. 

Figure 5.1 contains a probability tree describing the model of 

nuclear fuel prices. Every three years the annual rate of change in 

the fuel price is subject to change. The probabilities assigned 

to the branches of the tree reflect the tendency of the rate to remain 

steady rather than to fluctuate. 

The nuclear fuel price in the numerical example in Section 3.5 

decreases at a nominal rate of 1.7 per cent per year. In this model, 

the probabilities are assigned to the branches of the tree so that 

the expected rate of change is approximately the same. The expected 

price of fuel in 1985, based on the information available in 1969, is 

74 per cent of the 1969 price. The standard deviation of the price 

in 1985 is 12 per cent of the 1969 price. The data for this model was 

generated by the author and does not reflect the expertise that would 

be available from a person familiar with the nuclear fuel markets. 
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In a full-scale analysis the probabilistic model might be based 

on a detailed analysis of the nuclear fuel markets. The events that 

cause changes in prices would be identified and probabilities would 

be assigned to these events. The interdependence of the nuclear and 

fossil fuel markets could be modeled in detail. Since the purpose 

of this example is only to demonstrate decomposition under uncertainty, 

this hypothetical model is ade~uate. 

Formulation of the Algorithm 

The power system problem with uncertainty in nuclear fuel prices 

can be viewed as a simple extension of the deterministic example 

developed in Chapter III. Let the vector 

define the price of nuclear fuel in each period. The probabilistic 

process that generates the prices is given by the joint probability 

distribution 

The uncertainty in nuclear fuel prices directly affects the total 

hourly operating cost of nuclear plants. 

By taking advantage of the insights developed in Section 4.1, 

we can write a decomposition algorithm directly. The se~uential 

successive approximations algorithm with uncertainty in nuclear fuel 

prices is as follows: 
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SEQUENTIAL SUCCESSIVE APPROXIMATIONS ALGORITHM: 
v 

1. Guess initial prices A~(~)' A~(~)' A~(~)' A~~(~)' and 

A~~(~) where i = 0, ... ,I, and t = 0, ... ,T or 

start with an initial policy ~(~) at Step 3. 

2. Maximize 

v 
+ A~(~)~t(t,eT(~)) 

1, ... ,T in ascending order of the index T. Call the 

results 

3. Calculate new prices according to the relations 

192 



oc ) A.. t(s 
l -

where 

4. If the new prices equal the prices determined on the previous 

iteration (for all logically possible values of ~), then 

the optimal policy is ~n(~). Otherwise, return to step 2 

using the new prices computed in step 3. 

Implementation of the Algorithm 

The algorithm was implemented on the computer by using the proba-

bility tree methods discussed in Section 4.3. The program was written 

so that deterministic runs could be made simply by changing the input 

data. The computer program is identical to the program developed in 
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Chapter III, although some features of the program are unnecessary for 

the deterministic example. 

As in the deterministic example, the decision routine evaluates 

the combinations of plants in the catalog for installation in each 

year. Under uncertainty, it is important to carefully define the 

state of information at the time a decision is made. Thus, the lead-

time between the decision to install a plant and the first operation 

of the plant is important under uncertainty. 

The lead-time between the decision to install a plant and its 

first operation depends on the type of plant. Gas turbines typically 

require two years or less lead-time; thermal units about three years; 

and nuclear units about five or six years. In the numerical example, 

we assume all decisions are made with a six-year lead-time • .f A uniform 

lead-time for all plants simplifies the design of the catalog under 

uncertainty. If a sequential algorithm was not required to overcome 

gaps) then there would be no need for the uniform lead_-time assumption 

since installation decisions could be made independently for each type 

of plant. The assumption is justified because the relative insensitivity 

of the results to the uncertainty in nuclear fuel prices does not 

justify the cost of a more complicated decision routine for the sequential 

algorithm. 

Results of the Numerical Example 

The optimal policy under uncertainty in nuclear fuel prices is 

+ The lead-time is provided as an input parameter to the program and 
can be changed. 



summarized in Figure 5.2. Only the installation decisions are shown 

in this tree. The optimal policy was achieved in four iterations+ 

using a relaxation coefficient of 0.5. The initial policy is the 

optimal policy from the deterministic example in Chapter III. The 

difference in the expected present value of profit between the initial 

policy and the optimal policy in Figure 5.2 is only 1.2 million dollars. 

The present value of the deterministic example was 1194.2 million dollars. 

The most important feature of the optimal policy under uncertainty 

is that the initial decisions are the same as in the deterministic 

policy. Changes in the policy do not occur until 1982 when an additional 

nuclear plant is installed in the situation with the lowest nuclear 

fuel price. The changes in the policy after 1982 are in the directions 

our intuitions would suggest (more nuclear capacity when nuclear fuel 

price is low, more thermal capacity when nuclear fuel price is high). 

The insensitivity of the initial decisions to 1Ll1certainty in nuclear 

fuel price supports the conclusion that uncertainty is relatively 

unimportant in planning rapidly expanding power systems. The uncertainty 

might be more important if nuclear plants were among the initial instal-

lations in the optimal deterministic policy. Nuclear plants operate 

at relatively high load factors. Increases in nuclear fuel prices 

cannot be offset by installing more efficient plants. Nevertheless, 

it seems unlikely that the basic conclusion concerning uncertainty 

would be changed when the initial installations include nuclear plants. 

+ The total cost 
mately $160.00. 
tiona 

of the computer run summarized in Figure 5.2 was approxi­
Prices on 1332 resources are calculated on each itera-
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PARTIAL CATALOG 10 \3 
Cat a10g No. Nuclear Thermal Turbine 

1 - - -
10 - - 300 II 11./ 13 

11 - - 500 
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Figure 5.2: OPTIMAL POLICY UNDER UNCERTAINTY IN NUCLEAR FUEL PRICES 
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Conclusions Based on the Example 

In this chapter we have explored the effects of uncertainty in 

power system planning. On the basis of a previous analysis we selected 

nuclear fuel prices as aleatory variables for the numerical example. 

The results of the numerical example suggest the following conclusion: 

uncertainty that is resolved gradually over time is unimportant for 

capacity expansion planning in rapidly growing power systems.+ Thus, 

additional analytical effort would be more effective if it were spent 

on extending the scope of the model as suggested in Section 3.7. 

+ Of course, this conclusion depends on the degree of uncertainty, 
but the general insensitivity of the initial decisions to the uncertainty 
remains. 
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6.1 Summary 

CHAPTER VI 

SUMMARY AND CONCLUSIONS 

One of the objectives of this dissertation is to develop a metho­

dology for solving complex strategic decision problems in situations 

where detailed models are reQuired. The other objective is to apply 

the methodology to electrical power system planning. 

The mathematical foundations of decomposition are developed by 

using a series of five resource allocation problems. The first problem 

involves the allocation of a single resource among a number of projects 

under deterministic conditions. The second problem is a multiple 

resource problem. If time is modeled in discrete periods, dynamic 

problems can be viewed as multiple resource problems. The third 

resource allocation problem has an arbitrary (nonseparable) objective 

function. Arbitrary objective functions arise in problems with multiple 

measures of performance. Uncertainty is introduced in the fourth 

problem. Finally, the fifth problem involves both arbitrary objective 

functions and uncertainty. 

Together, the five resource allocation problems incorporate every 

aspect of complex decision problems. An important result of this 

dissertation is that each of the five problems can be decomposed and 

solved using the same basic techniQues. Furthermore, these techniQues 

reQuire no advanced mathematics beyond elementary calculus. 

The five related optimality theorems developed in this dissertation 



provide the theoretical basis for all of the results of this dissertation. 

The theorems provide a "fail-safe" test for the optimal solution of 

a resource allocation or decision problem. Any solution satisfying 

the conditions of the theorem is guaranteed to be a global optimum. 

The theorems are applicable to problems with discrete and nonlinear 

functions. 

In their simplest form, the optimality theorems are related to a 

theorem popularized by Everett [12]. Everett!s theorem was developed 

for constrained problems under certainty. In this dissertation we 

reinterpret Everett!s theorem in terms of an unconstrained optimization 

problem and extend its application to problems with arbitrary objective 

functions and complex forms of uncertainty. 

Two basic algorithms that iteratively search for the optimal 

solution are suggested by the optimality theorems. The successive 

approximations algorithm follows directly from the unconstrained inter­

pretation of an optimization problem in terms of projects that consu~e 

or produce resources for sale or purchase in a resource market. At 

each stage in an iterative search, upper and lower bounds can be computed. 

An important feature of the algorithms is that intermediate, suboptimal 

solutions are feasible and can be implemented if desired. 

Conceptually, the mathematical results of the theorem are valid 

for very general problems. In some problems, gaps make the results 

less useful. Several methods for treating gaps are discussed in this 

dissertation. The solution of the electrical power system problem in 

the presence of gaps was achieved by modifying the algorithms. 

The results on decomposition under uncertainty are applicable 
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to problems with very complex formsof uncertainty. The notation used 

to describe problems under uncertainty greatly simplifies the analysis. 

Powerful computational techni~ues for decomposition under uncertainty 

are proposed. The literature on mathematical programming and economics 

has very few nontrivial results on decomposition under uncertainty. 

The sections on arbitrary objective functions extend decomposition 

to problems with multiple measures of performance. Thus, the methodology 

developed in this dissertation is applicable to problems with complex, 

nonmonetary objective functions. The decomposition approach also 

provides insight into the problem of structuring preferences and 

assessing values. 

The results of this dissertation also suggest a method for iden­

tifying the resources, resource markets, and projects that permit 

decomposition. The application of the method to electrical power 

system planning illustrates that problems with complex technical inter­

actions can be solved by decomposition. 

The organizational interpretation of decomposition in terms of 

decentralized organizations provides many insights. For example, 

externalities in an economy are analogous to the complex technical 

interactions in a power system problem. Insight into decision making 

in organizations where profit is not the sole consideration is provided 

by the sections on arbitrary objective functions. The results of this 

dissertation can be viewed as contributing to the mathematical theory 

of decentralized organizations. However, none of the practical aspects 

of decentralization were explored. 

The electrical power system example demonstrates that every aspect 
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of this complicated strategic decision problem can be treated in a 

practical way. Decomposition provides insight into power system planning 

and suggests directions for extending the scope of the model. The 

solution of the power system problem under uncertainty demonstrates 

the practicality of decomposition under uncertainty. The results of 

the example suggest the following conclusion: Uncertainty that is 

resolved gradually over time is unimportant to capacity expansion 

planning in rapidly growing power systems. 

6.2 Directions for Future Research 

The results of this dissertation open up several new areas for 

future research. The following is a partial list: 

1. Additional algorit~Jlls are clearly possible. Algorithms that 

take full advantage of previous results in generating nei'T 

solutions would be valuable. 

2. Further theoretical study of the convergence of decomposition 

algori tD .. lDS i'Tould provide insight for choos 

algori tl1111 for a given problem. 

the best 

3. Tactics for applying penalty function methods in the most 

effective way vJOuld be useful in solving problems with gaps. 

4. Fu~ther development of approximation methods for decomposition 

of problems under uncertainty appears possible 0 

5. The entire subject of information value theory in the context 

of decomposed problems and decentralized organizations has 

not been investigated. 

6. A general computer program could be written that would solve 
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general nonlinear and discrete optimization problems under 

uncertainty. The inputs to the program would describe 

the resources, projects, and resource markets associated 

with an optimization problem. 

7. The results of this dissertation provide insight into resource 

allocation methods for decentralized corporations. For 

example, a capital budgeting system could be designed to 

operate on an iterative basis using prices. Research into 

the practical aspects of such systems would be valuable. 

8. The design of new institutions in a society can be viewed as 

an application of the results of this dissertation.+ Research 

into the practical aspects of this problem would be valuable. 

6.3 Conclusions 

This dissertation is an application of the "divide-and-conCluer" 

philos of problem solving: liThen faced vlith a complex prolJlem, 

break it down into small parts vThich can be Undel"stood and analyzed 

and then put the parts back together. We have demonstrated this 

philosophy in our research on decomposition. The essential theoretical 

results on decomposition were developed in terms of simple examples 

and then extended in small steps to problems 1Ll1der uncertainty. The 

results on decomposition extend the divide-and-conCluer philosophy to 

the optimization of complex decision problems. The ultimate appli-

cation of this philosophy will be its use in the design of new insti-

tutions for society. 

+ For example, see the brief discussion at the end of Section 3.7. 
Some additional insights into this problem are contained in Boyd and 
Cazalet [6]. 
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