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ABSTRACT

In this dissertation a methodology for analyzing complex decision
problems is developed and is applied to an electrical power system planning
problem. The methodology is based on the idea of decomposing a complex
problem into a number of simpler subproblems and then coordinating their
solution to solve the original complex problem.

The methodology is primarily designed for strategic decision problems
where a computerized model is appropriate. The methodology has two main
parts: The first part is concerned with structuring the model for the
decision problem, identifying the subproblems, and selecting a method of
coordinating the subproblems; The second part provides a mathematical
foundation for solving problems by decomposition.

In Chapter 2 the mathematical foundations of decomposition for deter-
ministic decision problems are developed by using a series of increasingly
complicated examples. In each example, a decision problem is interpreted
as a resource allocation problem among a number of independent projects
where the resources must be purchased in a resource market. The allocation
of the resources among the projects is usually coordinated through a
pricing scheme. By assigning a price to each resource and then adjusting
the prices in an organized way, an optimal solution to the original
decision problem is obtained. These examples show how to decompose
decision problems involving time, multiple resources and multi-attribute
preference structures.

The mathematical foundations developed in Chapter 2 are based on a

vi



simple theorem that provides a test for the optimal solution to a
resource allocation problem. The theorem provides sufficient condi-
tions for an optimum so that trial soclutions that pass the test are
guaranteed to be globally optimal. Solutions that do not pass the

test may or may not be optimal. The theorem is applicable to nonlinear
problems with decision variables defined on either discrete or con-
tinuous sets.

In Chapter 3 the first part of the methodology is demonstrated
by applying it to a capacity expansion problem for an actual electrical
power system. Detailed models of the generating plants, system operating
cost, and system reliability are developed. Decomposition of this
problem provides several insights into power system planning and shows
how to decompose problems with complex technical interactions between
projects.

A mathematical foundation for decomposition under uncertainty is
developed in Chapter 4. All of the results of Chapter 2 are extended
to problems under uncertainty including problems with a multi-attribute
risk preference function (von Neumann-Morgensterm utility function).

A new notation for describing decision problems under uncertainty

plays & key role in this chapter. The results of this chapter can
be applied to decision problems where the uncertainty is resolved

gradually, or quickly, over time and the decisions are dynamically
adjusted in response to new information.

The analysis of the electrical power system is extended in Chapter
5 to include uncertainty in a crucial state variable. The solution of

this problem demonstrates the computational feasibility of decomposition
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under uncertainty. The results of this chapter, together with Chapter
2, demonstrate that every aspect of this difficult power system problem
can be treated by the methodology.

The methodology can be applied to any strategic decision problem,
although it is most useful in problems with many decision variables.
When it is not appropriate to gather all of the information relevant
to the problem in one place, then the methodology suggests ways to
decentralize the problem so that the decisions are delegated to several
decision makers.

This dissertation provides significant contributions to power
system planning and to the theory of decomposition under conditions of
certainty and uncertainty. The most important contribution, however,
is a complete methodology for solving a class of complex decision

problems.
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CHAPTER I

INTRODUCTION

Strategic planning problems are often characterized by their
importance, complexity, dynamic effects, uncertainty, and complex
preferences. Many strategic planning problems require computerized
models if a careful analysis is to be performed. In this dissertation
a methodology is developed for analyzing complex planning problems
where detailed models are appropriate.

At present, the analyst's tools are rather limited in situations
where complex models are required. Generally, the analyst must choose

between the following two approaches to modeling and optimization:

1. Standard modeling and optimization methods such as linear
programming which solve an approximation to the actual
problem.

2. Detailed simulation models which require heuristic optimization

methods.

While some intermediate choices exist, they do not provide the gener-
ality required for analyzing many complex problems. In this disser-
tation very general modeling and optimization methods are developed
that take advantage of the natural structure of a complex problem
rather than imposing a restrictive structure on the problen.

TIn this chapter many features of the methodology will be discussed.



First, however, the objectives of the dissertation will be formally

stated.

1.1 Statement of Objectives

The dissertation has two primary objectives. They are

1. To develop a methodology for the solution of strategic
decision problems where detailed models can be economically
Justified, and

2. To apply the methodology to electrical power system planning.

The restriction to strategic decision problems implies that the
methodology is not designed for analyzing the tactical decisions such
as the decisions encountered in the daily operation of an electrical
power system. The restriction to computerized models implies that
all of the available information relevént to the decision can be
gathered in one place, as opposed to the situation in decentralized
organizations where mogst of the detailed information is diffused
among several decision makers and experts. Some of the reasons for
these restrictions will become clear as we proceed. At many points
in the development of the methodology we will indicate which portions

of the methodology apply to a more general class of problems.

1.2 Introduétion to the Basic Concepts of the Methodology

I

The methodology is based on the idea of decomposing’ complex

+ It is important to note that the term "decomposition' is often used
to describe the situation where two or more subproblems (or systems)
do not interact or where the interactions are insignificant. In such



problems into a number of simpler, independent subproblems and then
coordinating their solution to solve the original problem. Coordi-
nation of the decomposed subproblems usually is achieved through a
pricing scheme. By adjusting the prices in an organized way a solu-
tion to the original problem usually can be obtained.

The methodelogy can be divided inte two main parts. The first
part is concerned with structuring the model for the decision problem,
identifying the subproblems, and selecting @ method of coordinating
the subproblems. The second part of the methodology provides & mathe-
matical foundation for solving problems by decomposition.

In the first part of the methodology it is often useful to
interpret problems in terms of a resource allocation problem among
a number of independent projects where the resources are purchased
in a resource market. When the prices (marginal costs) of the
regsources are provided, then it is relatively easy to determine the
optimal amount of resources that each project should consume. By
adjusting the prices in ways that will be further described, the
allocation of resources among the projects can be coordinated so that
the optimal allocation for the whole problem is achieved.

The key to devising effective computational methods is to define

the resources and projects so that the projects are independent when

cases decomposition is easy to achieve. 1In this dissertation we are
generally concerned with subproblems that interact in some way. The
decomposition achieved by the methods of this dissertation is not
decomposition in the strict sense that the subproblems do not interact.
Rather, we say that given the prices on the resources, which cause

the interactions, we can act as if the subproblems do not interact.

The determination of the appropriate prices is considered to be a
separate problem.



when the prices of the resources are provided. One approach to iden-
tifying the resources and projects is to use calculus to obtain the
necessary conditions for an optimal allocation. The necessary con-
ditions can be expressed as a set of simultaneous equations where

the decision variables are the unknown variables. By considering
iterative methods for solving these equations, insight can be developed

into the problem of defining resources and.projects. When calculus

cannot be applied to a problem the approach just described still pro-
vides insight, but the second part of the methodology must be applied
to justify the resulting computational methods.

The second part of the methodology is based on & simple theorem

that provides a test for the optimal solution to a resource allocation

problem. The theorem provides sufficient conditions for an optimum
so that trial solutions that pass The test are guaranteed to be globally
optimal. Solutions that do not pass the test may or may not be optimal.
Thus, in a sense, the theorem provides a "fail-safe" test for the
optimal solution to a resource allocation problem, since it never
indicates a trial solution 1s optimal when a better allocation is
possible.

The conditions of the theorem define two optimization problems
that are related to the original problem. If the two problems have

the same solution, then the theorem guarantees that this solution

is the golution to the original problem. Significantly, the theorem



is applicable to nonlinear problems where the decision variables are
defined on either discrete or continuous sets.

The theorem is 1nitially developed to be applied to relatively
simple problems. However, the theorem can be easgily extended to apply
to very complex problems. The extension of the theorem to more complex
problems redquires no important new concepts. In its most general
form the theorem applies to problems involving time, uncertainty and
complex preferences.

In practice, the methodology does not provide an inviolable
procedure for analyzing a strategic decision problem. Usually, an
analysis of a problem is performed iteratively, in the sense that
succegsive improvements are made in the formulation of the problem
and design of the computational methods. 1In order to illustrate
some of these practical aspects of the methodology, it is useful to
congider an example. In this dissertation the methodology is applied
to the analysis of capacity expansion decisions in an actual power
gsystem. The analysis of this power system example will be discussed
in detail in Chapter III. The following section provides an informal

introduction to the example and insight into the method of analysis.

1.3 Applicatiohs to Electrical Power System Planning

An important strategic decision problem in electrical power

system planning concerns the installation of new generating plants.



The decisions in this problem include selecting the size, type, and

date of installation of the new generating plants.

In Chapter III an actual electrical power system problem is
solved by decomposing it so that each alternative generating plant
is viewed as a project or subproblem, TIn this section the results
of the example will be summarized in terms of a hypothetical decen-
tralized organization designed specifically to plan and operate the
power system. This summary also provides insight into developing
organizational interpretations for other complex problems.

At the head of this hypothetical organization is the president
who bears the ultimate responsibility for planning the power system.
Normally, he does not make the major decisions. Instead, the decisions

are delegated to the plant and system managers.

The plant managers are responsible for installing generating
plants. For example, one of the plant managers 1s responsible for
installation decisions for one type of plant (hydro, nuclear, conven-
tional thermal, or gas turbine) in one particular year. A plant
manager's decisions include choosing the size of the plant and

possibly selecting optional equipment and financing methods.

The system managers are concerned with the operation of the system.
Two types of system managers are together responsible for meeting the
demands for electricity. The first type of system manager is the
operating system manager. He is concerned with selecting the best
system for generating electricity. The second type of system manager

is the reliability system manager, who is concerned with selecting



the best system for assuring that the demands for electricity can be
met. TFor each year in the planning period it is useful to hypothesize
distinct system managers.

If each of the plant and system managers could act as if each were
running an independent business then the problem of planning the expansion
of the power system would be relatively easy. Unfortunately, the system
managers prefer efficient and reliable plants while the plant managers,
who do not bear the costs of operation and service outages, prefer
inefficient and unreliable plants because they cost less. Clearly,
some form of coordination is necessary.

One way the decisions can be coordinated is to compensate managers
for costs they incur because of the actions of other managers. If
the mechanism for compensating the managers is carefully designed then
each manager will still retain a degree of independence.

The simplest method of compensating the managers is a pricing
scheme. A pricing scheme, for example, sets prices on all the sexrvices

+

(resources) provided by the plant managers.' The system managers are
required to compensate the plant managers at these prices for the
quantity of each service provided. For the particular electrical system
congsidered in this dissertation the services include the total capacity
of each type of plant, the amount of hydro energy available, the hourly

operating costs of the plants, and the average available total capacity

based on reliability considerations. Separate services and prices

T In this dissertation we carefully distinguish between the "price'

of a resource and the "cost" of a resource. The cost of a number of
units of a resource is the price of the resource times the number of
units. Thus, for example, the cost is measured in dollars, whereas the
price is in dollars per unit.

7



on the services are defined for each year in the planning period.

Theoretically, the entire decision problem must be solved to
determine the prices of the services. For the optimal policy the price
of a service is the value of an additional unit of service provided
to the system managers. A practical method is to estimate the prices
and then successgively adjust the prices until the correct prices are
obtained.

There are many methods of successively adjusting the prices. 1In
one of the methods the organization's president initially estimates
the prices. Given the prices the managers in the decentralized organi-
zation independently choose the amounts of each service that they would
provide or consume at these prices. If the managers happen to agree
on the amounts of services, then the president has correctly estimated
the prices. If the managers do not agree, then the difference between
the proposed amount of each service provided and the amount consumed
indicates whether the price on that service should be increased or
decreased. Tor example, if more hydro capacity is demanded by the
system managers than is supplied by the plant managers, then the price
of hydro capaclty is too low and should be increased on the next iteration
of the prices.

This approach to planning by a decentralized organization i1s analo-
gous to the decomposition of a detailed model of the planning problem.
The decomposition approach is computationally superior to a direct
approach if the number of iterations required is small. Usually, the
computational effort required for each iteration is orders of magnitudes

less than the computational effort required to solve the entire problem



directly. Thus, significant overall computational savings are possible
with the method described above.

The results of this dissertation can be viewed as providing a
theoretical foundation for the intuitive decomposition methods described
above. An important part of the methodology developed in this disser-
tation is directed at the problem of identifying the services or

resources that are priced to coordinate the independent subproblems.

1.% Summary of Results

In Chapter II a theoretical foundation for the solution of extremely
general optimization problems 1s developed. While the theory is formally
valid for almost any optimization problem the results of the theory are
of practical interest only for unconstrained optimization problems
having speclal types of structure.

The theory is based on a simple mathematical result that provides
a test for the optimality of a trial solution to an optimization problem.
The test provides sufficient conditions for an optimum so that any trial
solution that passes the test is guaranteed to be a global optimum.

Trial solutions that do not pass the test may or may not be optimal.

Two general methods for searching for the optimal solution to a
problem are developed. Neilther of the methods can be guaranteed to
converge rapidly for all possible problems. However, the issue of
convergence is not crucial for strategic decision problems of the type
that require a detailed computer model. TFor this class of problems,
the analyst can afford to interact with the computer to choose the

best method for solving a large problem.



The computational power of the theoretical methods depends on the
optimization problem having certain special structure. Usually this
structure can be interpreted in terms of a resource allocation problem
among a number of independent economic units where the resources must
be purchased in various markets. Few problems naturally exhibit the
required structure. Often, a complex problem must be carefully formu-
lated to obtain this special structure. However, this approach is very
effective for many complex problems that cannot be readily solved by
any other method.

The initial theoretical results in Chapter IT are mathematically
similar to certain methods of solving constrained optimization problems.
All of the results of this dissertation are stated in an unconstrained
form. For simple problems the distinction between constrained and
unconstrained problems is often unimportant. TFor complex problems the
superiority of the unconstrained formulation of problems is evidenced
by the success of this dissertation in treating problems with very
arbitrary objective functions and complex forms of uncertainty.

The results in Chapter IV on decomposition under uncertainty are
valid for extremely general problems. Problems where the uncertainty
is slowly, or quickly, resolved over time and the decisions are dynam=
ically adjusted in response to new information can be treated by the
methods developed in Chapter IV. A significant result of this chapter
is that problems under uncertainty can be decomposed using exactly the
same technigques as problems under certainty. There are very few non-
trivial results on decomposition under uncertainty in the literature.

The theoretical results in this dissertation are interpreted in

10



terms of hypothetical decentralized organizations wherever possible.
Since the mathematical foundations of decomposition and decentralization
are similar, this dissertation can be viewed as a contribution to the
theory of designing decentralized organizations. Conceptually, this
theory can be applied within corporations and at all levels of govern-
ment. However, none of the practical issues concerning decentralization
are considered here,

In Chapter III a complicated electrical power system planning
problem is posed and solved by decomposition. The problem is baged
on an analysis of an actual electrical system. The application to
electrical power system planning is a convenient way of communicating
an approach to problem formulation. By using this approach, decompo-
sition can be applied to very complex problems.

The analysis of the power system problem requires no more mathe-
matical tools than the simplest problem formulated in Chapter II. The
level of mathematics requires elementary calculus at most. The only
complicating factor is the notational problem caused by the very size
and complexity of the power system problem.

The analysis of the power system problem yields important general
ingsights into power system planning. In Chapter V the analysis is
extended to include uncertainty in some of the crucial variables of the
power system problem. Thus, this dissertation is both a contribution
to electrical power system planning and a methodology for solving

complex decision problems by decomposition.

1.5 Related Literature

Many of the basic ideas behind decomposition have been in existence

11



for some time. There is a considerable literature on decomposition and
decentralization in the fields of economics, business and operations
research.

The results on the decomposition of unconstrained optimization
problems in this dissertation have drawn on the vast work on the decom-
position of constrained optimization problems. From our point of view,
the paper by Everett [12] is the best introduction to the decomposition
of constrained optimization problems. The work summarized in Arrow
and Hurwicz [ 2 ] is particularly relevant to the design of algorithms.
Lasdon [20] and Geoffrion [15] have developed other logical aspects
of decomposition that are relevant here.

Decomposition of constrained optimization problems under uncertainty
is a difficult problem and the literature on the subject is small. One
excellent attempt related to Everett's work on constrained problems is
in Mitchell [21]. A different approach that uses dynamic and linear
programming for problems under uncertainty is by Wilson [29].

The present work is a continuation of a joint research project by
the author and D. W. Boyd on decentralization of resource allocation
problems. The results of that research project are reported in Boyd
and Cazalet [ 6 ][7 ]. The dissertation of Boyd [5 ] develops a metho-
dology that uses decomposition to assist in the assessment of complex
preferences in decision problems that do not have a direct means for
economic valuation.

The dissertation of Helms [17] develops an approach to decomposition
of unconstrained problems from a different point of view. However,

Helms does not explicitly treat uncertainty in his work.

12



The literature on electrical power system planning is of varying
quality. The state-~of-the-art is essentially summarized in Nelson [23],
Berrie [ L4 ], and Turvey [28]. The power system problem examined in
this dissertation is based on an analysis performed by the author and
his colleagues in the Decision Analysis Group at Stanford Research
Institute [10][ 13]. The analysis was done for the Comisidén Federal de
Electricidad and it concerned the capacity expansion of the Mexican

electrical system with particular emphasis on nuclear power plants.

1.6 Contributions to Decision Analysis

Strategic planning problems provide @ unique challenge to0 management

il

scientists. Decision analysis' is one discipline that has addressed
itself to the logical solution of complex problems where significant
resources are involved. It has well developed quantitative tools for
the analysis of the one-shot, single project types of decisions. However,
in the area of multiple project, repetitive decisions,#'satisfactory
computational methods have not yet been developed.

In other disciplines, the powerful techniques provided by mathe-
matical programming have proved to be popular. ILinear programming,
for example, provides an extremely powerful tool for the analysis of
problems that can be structured within its assumptions. But, decision

analysts generally have been unable to put the techniques of mathematical

programming to work. One of the difficulties is that mathematical

T Introductions to decision analysis are in Howard [ 18], North [ 29]
and Raiffa [ 26].

# For a definition of multi-project selection decisions and a compre-
hengive review and critical analysis of the literature on the subject,
see Boyd and Matheson [ 8 ].
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programming under uncertainty is still not fully developed. Another
reason is that decision analysts typically do not formulate problems

in terms of the constrained models that mathematical programming specifi-
cally addresses 1tself to.

The results of this dissertation are useful in the decision analysis
of multiple project, repetitive decisions. The powerful concepts
of iteration and decomposition inherent in most mathematical programming
techniques are brought to bear on these difficult decision problems.

The new computational methods and ways of structuring problems apply
to decision problems that are best solved on a centralized basis.

Often the differences between the methods developed in this disser-
tation and the methods of mathematical programming and elementary calculus
are subtle. In the simplest problems the differences between constrained
and unconstrained formulations of decision problems are often a matter
of philosophy and only rarely do they significantly affect the difficulty
of an analysis. In the more interesting problems, where nonlinearity,
uncertainty, dynamic effects, and complex preferences are present, the
advantages of the methods discussed in this dissertation become evident.

Electrical power system planning is an example of a multiple project,
repetitive decision problem. In this dissertation we develop decomposition
techniques for a general class of problems and then apply the techniques
to electrical power system planning. We demonstrate that every important
aspect of this problem can be treated in a practical way. This successful
application is strong evidence that the methods developed in this disser-

tation can provide practical tools for the decision analysis of multiple

project, repetitive decision problems.

1h



CHAPTER IT

VATHEMATICAL, FOUNDATIONS OF DECOMPOSITION

In this chapter we develop the mathematical foundations of a
methodology for solving unconstrained optimization problems by decom-
position. The mathematical foundations are developed using a series
of increasingly complicated examples. These examples do not apply
directly to any particular problem; rather, they are suggestive of
ways to structure actual problems.

The examples focus on the resources allocated in a decision
problem. The first example treats problems with a single resource
to be allocated among a number of projects. It is assumed that the
resources are purchased in a market where the price of the resource
is a function of the amount purchased. This formulation of the problem
should be contrasted with the more usual constrained formulation which
limits the amount of resources available.

The second example in this chapter extends the results of the
first example to problems with multiple resources. The third example
treats problems with very general objective functions. Both the second
and third examples are applicabie to problems over time. The development
of the mathematical foundations for decomposition under uncertainty is
postponed until Chapter IV.

For each of the examples we prove an optimality theorem, derive
bounds on the optimal solution and present two search algorithms.
Essentially, all of the basic ideas are introduced in the discussion

of the first example.
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2.1 Single Resource Problems with Separable Cbjective Functions

The mathematical ideas developed in this section apply to the

following class of problems:

1. The relationship between a given resource allocation and the
eventual outcome is known with certainty.

2. The objective of the problem can be interpreted as maximizing
profit where profit is separable into a term representing
the total project returns and a term representing the cost
of a single resource.

5. The cost term depends only on the total amount of a single
resource allocated among the projects.

The resources, revemues, costs, and profits should be flexibly

interpreted. For example, a resource can be & service, a commodity,

or something less tangible.

The Example
Consider the problem of allocating a single resource among J

projects. Let

a

x. = amount’ of the resource used by the jth project,

J=1y eer 5 J .

cee XJ), a vector.

The symbol "=" is read "is defined as."
ym

¥

A negative value for Xj indicates a net production of the resource.
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R(x) = total revenue from all projects as a function
of the amount of the resource employed by each

project. In general,

J
R(x) = 2, rs(x)

j=1

where rj(§) is the return assigned to the jth

-

project.

y =total amount of the resource used by all J pro-
Jects. Thus

J
y = z; Xj .
j=1

¢(y) = total cost of the resource purchased in the resource

market.

The resource allocation problem is to choose an x to maximize the

profit function
R(x) - C(y)

where X is chosen from the completely arbitrary set X. The set X
can restrict the allocation x 1n any way. TFor example, the set X
can restrict the resource to be available only in discrete units. Tater
in this section we will require both R(x) and X to have certain pro-

perties.

+<At this point, the revenue assigned to the jth project can depend on
the allocations to every project. ater we will make the assumption
that the revenue assigned to the J project is independent of the
revenue assigned to the other projects. This assumption is not redquired
now.
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Many optimization techniques are applicable to the type of problem
described above. The techniques range from an exhaustive search over
all elements of the space X +to sophisticated nonlinear programming
techniques. The more powerful techniques utilize certain special
characteristics of a problem to guide a search for the optimum and to
guarantee that the result is the optimal resource allocation.

When the number of projects in the example resource allocation
problem is large, the problem is more difficult to solve. For example,
a problem with only 10 possible resource allocations to each project
results in an overall problem with lOJ possible resource allocations.
In this section we develop methods for solving problems with large

numbers of projects.

Statement and Proof of Theorem T

There are two important tasks in the design of optimization methods.
One task is to develop methods for recognizing the optimal solution
once it is found. The other task is to design efficient methods for
finding the optimal allocation. The following theorem relates to the
first task. The theorem is useful because it provides a method for

testing whether a given resource allocation is optimum.

*
THEOREM I:+ If X maximizes

J
R(x) - N 2 =x,
=1

Some of the history behind this theorem is reviewed in the discussion
of constrained and unconstrained problem formulations later in this
section.

18



*
over all x € X, and if y maximizes

- C(y)
over all y, and if
%: * *
X. =Y
j=1 Y
*
then X maximizes
R(x) - C(y)

over all X € X.+

Proof:

a) The ‘theorem statement implies the following two inequalities:

J I,
R(x) - 2, x. <R ) - ) x. (1)
j=1 j=1 9
holds for all x e X, and
% %
o= Cy) <y - cy) (2)
holds for all y.
b) Combining inequalities (1) and (2) gives
J * I % * %
R(x) - A EXjJr?\Y-C(Y)ER(E)-?\Z s -y (3)
j=1 j=1

which holds for all x ¢ X and all y.

c) Since (3) holds for all y it must also holds for y =

1] 4
0]
]

(]

J

T

The statement x ¢ X 1s read "§ is an element of the set X."
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where x ¢ X. 1In this case the terms involving A\ on the left side

of (3) cancel, and

R(x) - C( xj> <R(E) - cly) + x[y* - (&)

] &
N
kel
k
| S—

Nals

J

holds for all X € X.

d) By the statement of the theorem

Thus, the terms involving A on the right side of (&) cancel and

R(x) - c(
J

IS

0[]

xJ.) <R(x) - C(

J

. x§> (5)

holds for all x € X. Hence the theorem is proved.

Discussion of Theorem T

Theorem I can be viewed as a test to be applied to a trial resource
allocation. If the trial resource allocation simultaneously maximizes
both R(x) - A .§> Xy over all x € X and Ay - C(y) over all vy,
then the trial giiocation is guaranteed to be the globally optimal
allocation. However, if the trial allocation fails the test provided
by the theorem then we cannot say definitely that the trial solution
is not optimum. Stated differently, Theorem I provides only sufficient
conditions for an optimum. Thus, in a sense Theorem I provides a
"fail-safe" test since it never indicates a trial allocation is optimum
when there is a better allocation possible.

The functions R(x) and C(y) are completely arbitrary (except
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they must be real-valued). The set X 1is also completely arbitrary.
Thus, Theorem I is valid for an extremely large class of problems
including discrete, nonlinear problems.

We can get a considerable amount of insight into Theorem T by
studying its application graphically. An application of the theorem
is illustrated in Figure 2.1. The horizontal axis of the figure is
the total consumption of the resource by all J projects. The vertical
axis 1s the total revenue from all J projects. Each of the points
in Figure 2.1 represents a particular allocation of resources.

The resource cost function is also plotted in Figure 2.1. The
vertical axis of the figure represents total cost when we refer to the
resource cogt function. Since the profit obtained from a given policy
is just revenue less cost, the vertical distance between a policy and
the resource cost function in Figure 2.1 is the overall profit of that
policy. The resource cost function shown in Figure 2.1 happens to
be convex.+

The maximization of R(x) - A

J
be interpreted graphically. Consider a hyperplane of slope A. In

X. required in Theorem I can

s

Figure 2.1 this hyperplane is a straight line of slope A. Now, lower
this hyperplane until it touches a policy in the revenue-resource space.

The first policy touched by the hyperplane of slope A, maximizes

I . *
R(x) - Ay, where y = > X, call this policy x .
J=1

+'A function is convex if the function always lies below or on a line
drawn between any two points on the graph of the function, i.e.,

c(y) flac(yl) + (l%x)c(yg) where 0 <a < 1. A function is strictly
convex if the inequality holds in the strict sense. A function is
(strictly) concave if the negative of the function is (strictly) convex.
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By a similar operation we can determine the total amount of the
resource required to maximize Ay - C(y), or, equivalently, to minimize
¢(y) - Ay. To minimize C(y) - Ay we raise a hyperplane of slope M\
until it touches a point on the resource cost function. The amount
of resources required at that point is the amount that maximizes
Ay - c(y).

*
The statement of Theorem I says that if the x that maximizes

J J
R(x) - n ), X also maximizes Ay - C(y) where y = »; X then
J=1 J=1

g% is the optimal allocation. In Figure 2.1 the conditions of the
theorem are not satisfied because the parallel hyperplanes do not
generate the same total resource allocation. However, in Figure 2.2
the conditions of the theorem are obviously satisfied. The key to a
succegsful application of Theorem I is to choose the correct value for
N We will discuss a number of methods for adjusting N\ later in this
section.

Several graphical applications of Theorem I are presented in
Figure 2.5. Some of the examples illustrate cases where the theorem
guarantees an optimum if the correct AN can be found. The other
examples illustrate cases where the theorem cannot guarantee that any
of the solutions is the optimal solution, regardless of the slope of
the hyperplane employed.

A1l of the examples in Figure 2.5 illustrate the application of
Theorem I to problems with continuous revenue and cost functions.

The total revenue is defined in each case as
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R(x) = mex R(x)
xeX

J
subject to z; X, =X
j=1

so that we can use a two-dimensional presentation.

Example a) in Figure 2.3 illustrates a case where the total revenue
function is concave and the cost function is convex. The solution
determined by the parallel hyperplanes satisfies the conditions of
Theorem I.

Example b) illustrates a case where the theorem cannot guarantee
the optimality of a policy even though an optimal policy obviously

exists. The difficulty arises because the optimal policy lies in a

it

" When the maximum of R(x) 1is determined by lowering a hyperplane

gap.
it is not possible for the hyperplane to reach into the gap in the total
revenue function.

Gavs in the total revenue function exist only when the total
revenue functlion is not concave. Nevertheless, Theorem I is still
useful in problems with non-concave total revenue functions, if the
optimal policy is not in a gap. Example c) illustrates a case where
the theorem is able to guarantee the optimality of a policy even though
R(X) 1s non-concave.

Example d) in Figure 2.3 demonstrates that gaps also can exist

in the cost function if it is non-concave. Again, Theorem I will

guarantee the optimality of a policy only if the policy does not lie

+'A gap is a well-defined term in the literature on mathematical pro-
gramming. A paper by Everett [12] popularized the term. We will
discuss methods of resolving gaps in the subsection on penalty functions.
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in a gap. When the optimal policy lies in a gap Theorem I simply has
nothing to say. 1In such cases the analyst is forced to use other
techniques including the extensions of Theorem I discussed later in

this section.

Constrained and Unconstrailned Problem Formulations

The relationship between constrained and unconstrained formulations
of a problem is central to the problem of developing a methodology for
formulating and solving complex problems. We must, however, be careful
in our discussion of this topic, because the adjectives "unconstrained"
and "constrained" never completely describe a given problem formulation.

In discussing constrained and unconstrained problem formulations
there are two important points to consider.

The first point concerns how well & model describes the decision
maker's view of his problem. If there is an overwhelming physical
or economic reason why a particular variable in a problem should be
restricted then a constraint on that variable is a good modeling approxi-
mation. On the other hand, if a variable is constrained for analytical
reasons then it is important to test the sensitivity of the ultimate
decision to the level of the constraint. Lagrange multipliers are
particularly useful in this regard.

The second point concerns the difficulty of the analytical problem.
A constrained problem formulation eliminates the need for detailed
modeling of certain features of the problem. In the simple example
used in this section a constraint on the amount of the resource available

would eliminate the need for a model of the resource market. Another
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apparent advantage of constrained problems is that mathematical pro-
gramming techniques for constrained problems are fairly well developed.

The advantages of a generally unconstrained formulation of a
problem are particularly important in strategic decision problems. In
strategic decision problems the only realistic constraints are "physical
constraints.”" Physical constraints, for example, are the number of
hours in a day or the availability of a resource in discrete amounts.

Constrained formultions of problems tend to be least realistic
when time, uncertainty and multiple outcomes must be explicitly treated.
Very often an analyst will attempt to avoid the hard analysis regquired
to construct a preference model for these situations. Instead he will
use constraints to eliminate some outcomes from consideration. The
result is that a clear understanding of the preferences of the decision
maker is avoided, but often at the expense of not satisfying the decision
maker.

Advances in the theory of preference models and more experience
in the construction of resource cost models will make the use of uncon-
strained models of decision problems less difficult. One of the objec-
tives of this dissertation is to develop additional optimization methods
for unconstrained problems.

At the theoretical level, optimization techniques for congtrained
and unconstrained problems are strongly related. A good example is
the claggical method of Lagrange multipliers which transforms a con-
strained optimization problem into a series of unconstrained problems.
This approach is particularly well-expressed in Everett [12] where he
illustrates how a hard problem can sometimes be decomposed by using

Lagrange multipliers.
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It is interesting to compare Everett's main theorem with Theorem T.
Consider the following constrained optimization problem which is mathe-
matically identical to our single resource market problem:

max R(x) - C(y)
EEX;Y

subject to -y =0.

J
X,
j=1 Y

The constraint can be eliminated by defining a single ILagrange multiplier

and formulating the Iagrangian as follows:

L(x,y,N\) = R(x) - Cc(y) - x[

For this problem, Everett's main theorem states: if, for some value
* *
of N, the quantities x and y maximize L(x,y,\), and if

J

—

\ * ¥

2, X, -y =0, then x ,y is the optimal allocation. Clearly,

j=1 ¢

Theorem I is & restatement of Everett's main theorem.+
The essential difference between Everett's theorem and Theorem I

is that Theorem I is expressed in a form that is more natural to uncon-

strained problems than is Everett's theorem. This rather subtle difference

between the two theorems will become crucial when we extend Theorem I to

more complicated situations. The unconstrained approach embodied in

Theorem I will allow us, in later sections, to treat problems with

multiple objectives, time dependence, uncertainty and complex technical

¥.Actually Everett's theorem is more general since it allows inequality
constraints at the expense of requiring the Lagrange multiplier to be
positive. In the present context, only equality constraints are relevant.
Thus negative Iagrange multipliers are permissible here.
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interactions between projects. These problems have not been solved
satisfactorily by constrained methods.

In this dissertation we sometimes find it useful to study constrained
problems for the insight they provide and most importantly for the mathe-
matical technigues that have been developed for constrained optimization
rroblems. Some of the algorithms and most of the basic mathematical
tools used in this dissertation were originally developed for constrained
problems. Another reason for studying constrained problems is that
there may be portions of some strategic decision problems that involve

physical constraints.

Search Methods

As mentioned earlier, the first task in the design of optimization
methods is to develop an optimality test. For our simple example,
Theorem I provides such a test. The second task is to design efficient
methods for finding the optimal solution. Generally a search method
is expressed in the form of an algorithm.

An algorithm is a detailed set of instructions for moving from
one solution to another with the objective of dquickly converging on
the optimal solution. 1In this dissertation we take a flexible approcach
towards the design of algorithms. We will outline a number of algorithms
and discuss their specific features. In practice, however, the analyst
will normally consider a variety of algorithms to solve a given problem.
More than one algorithm may be used in the solution of a single problem.
Fortunately, the optimality test provided by Theorem I is independent

of the method used to find the optimal solution.
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Bounds

Upper and lower bounds on the optimal profit of a resource allo-
cation problem are useful aids in searching for the optimal allocation.
If the upper and lower bounds are sufficiently close at a particular
stage in a search then the search can be discontinued and the present
solution can be taken as optimal "for all practical purposes.”

Bounds are also useful in another way. If a solution lies in a
gap, then Theorem I cannot guarantee the optimality of the solution.
However, if a solution can be obtained that is sufficiently close to
the upper bound on profit, then there is no need to probe the gap for
a better solution.

The method of bounding the profit is illustrated in Figure 2.4.

Let §' be the resource allocation that maximizes

R(§) - A X,

1Y

u'l:\f]t;

J

over all x ¢ X. Then a lower bound on the optimal profit is given by

j/ J, \
p' =R - o2 %,
j=1

which is just the profit resulting from the allocation §’.

Now, let y' %be the amount of resources required to maximize

Ay - Cly)

over all y. An upper bound on the optimal profit is given by

It o
'
<3
Ty o
| S

p = R(x') - c(y') + X[y' -
3

%0
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At each stage in a search the relevant lower bound is the greatest
lower bound obtained so far. Similarly, the relevant upper bound is

the smallest upper bound obtained so far. At the optimal allocation,

The proof that pu is an upper bound follows directly from the
proof of Theorem I. Inequality (4) in the proof of the theorem can

be rewritten in the form,

x.) < R(x') - c(yh) +%.|:y' - %; x'.]

R(x) - c(' ; P

J

1l =
'

which holds for all x ¢ X. The term on the right side is the upper
bound on the optimal profit.

In some problems it is possible to obtain tighter bounds that
depend on the particular structure of the problem. One such alternative

method is developed in Boyd and Cazalet [ 6 ].

Successive Approximations Algorithm

The first formal algorithm we will investigate is called the
successive approximations algorithm [ & ]. The algorithm is named
for its similarity to the method of solving sets of equations by the

classical method of successive approximations.

SUCCESSIVE APPROXIMATIONS ALGORITHM:
1. Guess an initial )\, xo or start with a trial total

allocation at Step 3.
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2. Maximize
1 J
R(x) - n ) x
=1

il

over all x ¢ X. Call the result §F.

3. C(Calculate xn+l according to the relationship

n+1
A c(y)

gl

C(y) must be convex in this algorithm.
+
b, 1f A° + equals A" then the conditions of Theorem I
*
are satisfied, and g? is equal to x , the optimal

+
allocation. Otherwise, return to Step 2 using xn l.

The successive approximations algorithm requires that C(Y) be
convex and differentiable. Under these assumptions Step 3 is equivalent
to finding a A such that Ay - C(y) is maximized over all y at

J

bt

v= 2, X?' Steps 2 and 3 and the condition in Step 4 that succesgive
j=1

A's be equal, combine to satisfy the conditions of Theorem I.
Bounds on the optimal profit can be computed at each stage of
the guccessive approximations algorithm.# In terms of the notation

used to define bounds in the previous subsection, A 1is egquivalent

ations. We could have used the rather cumbersgome notation A for
example. However, the distinction between N\D/ and A raised to the
nth power will always be clear from the context of the application.

#'A relaxation version of the successive approximationg algorithm is
described later in this subsection. With a relaxation coefficient not
equal to unity, the calculation of an upper bound is not as direct.

+ The superscripts on xn and xn are an index to the numbe{ ?f iter-
n
J
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J
to hn, x' is equivalent to 5?, and y' is equivalent to % xg_l.
Jj=1

An upper bound on profit cannot be computed until the second iteration
of the succesgsive approximations algorithm. The bounds require essen-
tially no additional computational effort.

The statement of the successive approximations algorithm provides

an economic interpretation of the term AN. In Step 3, A 1is glven by

d

A= T c(y)

J
j=1 Y

In this case, A 1is the marginal cost of the resource at the operating

J
point y = E; x7. If the project revenue functions are differentiable
=1

then, at the optimum, marginal revenue is equal to marginal cost.

The economic interpretation of A as a marginal cost reveals
the connection between the methods discussed here and the methods of
marginal cost pricing that have long been popular in economics [23],
[28]. However, the methods discussed here do not require the revenue
functions to be differentiable. In many of the algorithms that we
shall propose the cost function C(y) need not be differentiable.
Hence, we will usually refer to A as a 'price" rather than a marginal
cost. TFurther economic interpretations are discussed later in this
section. |

We will not study the convergence of algorithms in detail. This
does not imply that convergence is always easy to obtain in the algorithms
that we will use. More theoretical study of the algorithms would have

practical value in that it provides insight for designing algorithms.
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Fortunately, in the class of strategic decision problems treated in
this dissertation it 1s relatively easy for the analyst to interact
with the computer to facilitate fast convergence. Thus, the analyst
can modify algorithms or choose a new algorithm as the problem is
being solved.

The mathematical study of convergence generally requires overly
strict assumptions that, in practice, are not always required for fast
convergence. In order to say something in general about convergence
of an algorithm it is usually necessary to make some statements about
the continuity of the functions. Since many practical examples involve
discrete functions, the study of convergence might provide insight for
discrete problems but would not be directly applicable. The convergence
of the successive approximations algorithm is considered in Boyd and
Cazalet [ 6 ] and again in Boyd [ 5 1.

One approach towards improving convergence of the successive
approximations algorithm is to introduce a "relaxation coefficient.”
Let xn be the price of the resource determined on the previous iter-

+
ation. The new price xn * 1s given by

+
Kn 1

=0 c(y) + (10"
n

where 0 <o < 1.

This calculation replaces Step 3 of the succesgive approximations
algorithm. For & equal to unity the algorithm is as before. For
 less than unity the algorithm will converge more quickly in situations

where successive solutions tend to oscillate about the optimal solution.
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A disadvantage in using a relaxation coefficient in the successive
approximations algorithm is that an upper bound is more difficult to
determine. Practically, one mus®t firs£ perform Step 2 of the next
iteration with & equal to unity in order to compute the current bound

and then repeat Step 2 with ¢ less than unity.

Price Directive Gradient Algorithm

Our second formal algorithm is in some ways more sophisticated
than the successive approximations algorithm. The price directive
gradient algorithm attempts to minimize the upper bound on profit by
intelligent choices of successive values for A.

We have already shown that
U - J
p = R(x') - C(yt) +A'y - P Xt‘]

provides an upper bound on the optimal profit. The rate of change

(gradient) of the upper bound with respect to A is given by

dp” %
~— =y - b
ON j=1 ¢

Economically, the result says that the rate of change of the upper
bound is just equal to the excess supply of the resource.

If we view our resource allocation problem ag the problem of
minimizing the upper bound pu then it is reasonable to move A 1in
the direction of the gradient of pu with respect to A. This obser-
vation suggests the following rule:

1. TIf the excess supply is positive, then decrease A\.

2. 1If the excess supply is negative, then increase A\.
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We can state this rule algebraically as follows:
n+1l n- n
A =N - alyn - 1{.]
j=1 *
where
(¢ =an appropriately chosen positive constant.
n . th . .
A~ =price of resource on the n iteration.
kn+l =price of resource on n + lSJG iteration.
yn =y' on the nth iteration.

x? E;xé on the nth iteration.

One way of choosing the constant o 1is to use the «a that mini-
mizes pu in the direction of the gradient. In practice, however,
the analyst would usually adjust < on the basis of a number of intuitive
inputs. In multiple resource market problems the direction information
provided by the gradient is particularly valuable.

The price directive gradient algorithm can be summarized as follows:

PRICE DIRECTIVE GRADTENT ALGORTTHM:
1. Guess an initial price »C.

2. Maximize
0 J

R(x) - N z> X
=1

over all x e X. Call the result x .

3. Maximize

Ay - C(y)

over all y. Call the result v .

+ The symbol <« wused in this subsection is not to be confused with the
relaxation coefficient described in the previous subsection.
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J
L. 1f 3 X? = vy, then the conditions of Theorem I

*
are satisfied and g? is equal to x , the optimal
allocation. Otherwise, compute a new value of A

according to
J
+
knl:xn+a[yn— > xn]
=1
and return to Step 2.

Convergence of the price directive algorithm depends on the constant
. For small values of &, the convergence of the algorithm tends to
be slower but more certain. In problems where convergence is difficult
to achieve, a smaller & will often provide convergence.

Mathematically, this algorithm is identical to the price directive
algorithm for constrained problems. The name of the algorithm follows
Geoffrion [15]. The algorithm is extensively studied in Arrow and Hurwicz
[ 2], and Lasdon [20]. They show that the algorithm will converge for
sufficiently small values of the constant ¢, 1if the revenue function
is concave and the cost function is convex and either of these conditions
hold in the strict sense.

There 1s, however, an important difference between the unconstrained
version of the algorithm presented here and the constrained version
studied in the references. TIn the constrained version of the algorithm
it is mathematically impossible to implement the intermediate solutions
obtained by the algorithm. In a congtrained formulation of a problem,
only the optimal solution is (primal) feasible.

In the unconstrained version of the price directive algorithm
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intermediate solutions can always be implemented because the resource
market can absorb the excess supply or demand for the resource. Further-
more, the intermediate solutions provide a lower bound on the optimal
profit that is not available in the constrained version. The importance
of the differences between these two versions of this algorithm will

become clearer in later sections of this dissertation.

Decomposition

The computational costs associated with the proposed algorithms
depend on the difficulty of the optimization problems that are imbedded
in the algorithms. The imbedded optimization problems can be as difficult
as the original problem when completely arbitrary project revenue and
resource cogt functions are assumed. The computational advantages of
the methods proposed in this section arise only when the problem has
certain special structure. In many cages this special structure is so
valuable that it is worthwhile to reformulate a model to obtain the
computational advantages associated with the special structure.
In Step 2 of each of the algorithms the following optimization
problem must be solved:
J
maximize R(x) - A Y %
xeX J=1

5
The solution of this problem requires, in general, a J-dimensional
search. Thus, this problem is nearly as difficult as the original

problem. Furthermore, this problem usually needs to be solved a number

of timeg before the optimal allocation is determined.
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Now, congsider the case where the revermue from each project is
independent of the amount of resource allocated to all other projects.

With such independent projects,

J

where

rj(xj) = revenue from jth project as a function of the

amount of resource allocated to that project.

Furthermore, suppose that the set X describing the alternatives can

be partitioned into the product set formed by

= % WX oeee X
X Xl X2 Xj—l X Xj

where Xj € Xj and Xj é Xk for k # J. This second assumption
implies that the allocation of resources to the jth project in no way
affects the alternatives available to the kth project when k £ j.

By employing the two assumptions stated above, the J-dimensional

optimization problem in Step 2 of the algorithms becomes J one-dimen-

sional problems, i.e.,

, J J
max R(x) - N 2, x. = » [ max r(x,) - ax,]
= Loy J

J=1 =x.eX.
J J

XeX J

Thus, we say the problem decomposes when a price is defined on the
resource and the projects are completely independent except for the
interactions caused by the resource market.

The computational advantages of decomposition can be very important

in large problems. Since the difficulty of a search increases approximately
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exponentially with the dimensionality of the problem it is often much
easier to solve many single-dimensional problems several times rather
than solve one, multi-dimensional problem.

In problems where the projects are not obviously independent, a
useful approach is to try to identify the cause of the interrelationship.
Many times, the interactions between projects can be modeled, at least
approximately, in terms of a common resource and a market for that
resource. The electrical power system problem in Chapter IIT is a
good illustration of decomposition methods in problems with complex

interactions.

Organizational Interpretation of Decomposition

Decomposition is a computational tool for solving decision problems
that can be treated on a centralized basis. For example, & company in
which all decisions are made by & single individual or group would have
problemg of this tyrpe.

A decentralized organization is one where the decisions are delegated
to many individuals or groups. Generally the independent decisions made
by this organization must be coordinated in some way.

In this section we will interpret our results on decomposition
in terms of & hypothetical decentralized organization. The interpre-
tation provides both insight into decomposition and concepts that are
+

useful in the design of decentralized organizations.

The basic decentralized organizational structure used in this

+ Decentralization is discussed extensively in Arrow [2 ], Boyd and
Cazalet [ 6], and Morris [21].
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dissertation ig illustrated in Figure 2.5. In this hypothetical organi-
zation there are three types of positions.

At the top of Figure 2.5 we have identified an impresario who is
in some sense "running the show." More precisely, he is responsible
for defining the structure of the organization and for defining the
responsibilities of the other members of the organization.

On the left side of Figure 2.5 we have identified several entre-

preneurs. Generally, the entrepreneurs are directly responsible for
employing resources in the productive activities that the organization
is organized to perform.

Finally, a resource manager 1s shown on the right side of Figure

2.5. The resource manager is responsible for satisfying the entrepreneurs
requests for scarce resources or disposing of abundant resources. 1In
more complicated situations there will be several resource managers;
one for each resource.
This general organizational structure is applicable to a wide
variety of situations. One example in a corporate context interprets
the impresario as the company president, the entrepreneurs as division
managers, and the financial vice-president as one of the resource managers.
The same general structure can be applied at other levels in a corporation.
In a governmental organization, we might interpret the impresario as
the governor of a state or the pregident of a country. The entrepreneurs
might be lower-level decision makers or even independent citizens whose
decisions interact through common resources. The resource manager might
represent a public institution charged with the responsibility for the

management of a scarce natural resource.
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We can interpret our single resource example in terms of the general
decentralized organization that was illustrated in Figure 2.5. 1In this
case, the entrepreneurs are project managers responsible for deciding
on the amount of a resource to use in their project. Given the price
of the resource, each project manager independently maximizes 'profit"
according to

max:[rj(xj) - kxj]

X.€eX.
Jd J

where kxj is the "penalty" paid for the use of the resource.

The resource manager's task depends on the algorithm chosen by
the impresario or possibly by the resource manager himself.

For example, the successive approximations algorithm instructs
the resource manager to set the price of the resource equal to the
marginal cost of the resource.

With the price directive gradient algorithm, the resource manager
acts more like a project manager. Independently of the project managers,
he maximizes "profit" according to

max[Ay - C(y)]
y

where Ay 1is the "penalty'" he receives from the entrepreneurs. The
price of the resource on the next iteration depends on the "excess
supply" of the resource. The excess supply is the difference between
the resource manager's purchase of the resource in the resource market
and the total requirements of the project managers. The price of the
resource, in this case, could be set by either the impresario or the

resource manager.
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Tt is tempting to evaluate the performance of the project managers

on the basis of their "profit,"

* *
rj(xj) - KXj .

However, the distribution of the cost of the resource among the project
managers is rather arbitrary. The arbitrariness of the distribution
of resource cost will become more obvious in the discussion of penalty
functions following later in this section. The appropriate basis on
which to evaluate a manager's performance is the quality of his decisions
rather than on the magnitude of his profits. In a highly interactive
situation,a project manager's profit depends largely on factors beyond

his control.

An Alternative Development of Decomposition

In this subsection we &evelop some of the results of the previous sub-
sections under the assumption of differentiability. This alternative
development is interesting because it relates the results of this
dissertation to the optimization methods provided by calculus. However,
in practical terms, the development is useful because it provides an
approach to identifying resources and prices in very complex problems
where unaided intuition is often misleading.

We recall that our simple resource allocation problem can be written
as

J J
maximize(jga rj(xj) - C<‘2€ Xj> }

X € X J
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if we assume that the revenue function is separable. TFor simplicity,
we will examine the problem without constraints, although some simple

constraints such as positivity constraints (E > 0) could be treated

1

*
easily. The necessary conditions’' for x  to be a maximum for this

problem are

52— r.(xj) . - gg ¢(y) =0 for j=1, «ur 5, J .
x

. ] J %
J 3 y= 7 X
j=1
These conditions are also sufficient if the function

J
r.(x.) - C( D X.)

Foge

*
is concave. To determine the optimal allocation X we must solve
the J simultaneous equations describing the necessary conditions.

¥
The solution of the equations for x is made relatively easy

if we observe that the term

is independent of the index Jj. Suppose we set this term to an initial
value, xo. Then the J simultaneous equations become J independent

equations of the form

o) n
S ) oM =0
j ]

n
each of which can be solved for X?- Having solved for x  we can

; Background material for the development can be found in most elementary
texts on calculus such as Courant [11].
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n+l

calculate A according to
n+tl O
=3 c(y) T
yo= Y %
j=1
n+l n n ¥ . .
I A =X , tThen x 1is equal to x , the optimal allocation.

Obviously, the solution process just described is the successive approxi-
mations algorithm developed earlier in this section. In economic terms
we are simply allocating resources so that marginal revenue equals
marginal cost.

An important insight is that the allocation x? satisfying the

equation

-t =0
n
X.
j

0
LTSIy
J
is also satisfied by the solution to the problem,

maximize [r.(x‘) - Ak
x. 3N 3]

under the assumptions made in this subsection. Thus, having defined
the price A\, we can solve the original J-dimensional problem by
solving J one-dimensional problems. Theorem I and the subsequent
results based on that theorem demonstrate that this result is valid
for a much larger class of problems than indicated by the assumptions
in this subsection.

A complete development of decomposition under the assumption of

differentiability is in Boyd and Cazalet [ 6 ].
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A Method for Identifying Resources and Prices

In complex problems it is often difficult to identify the appropriate
resources on which to define prices. 1In problems where there are strong
interactions between projects, decomposition can often be achieved by
defining new resources or parameters to characterize the interactions.
The resulting decomposition is most effective if the resources are
chosen to minimize the number of resource markets. One looks for
resources that have an additive relationship among projects so that a
price defined on a single resource serves to coordinate many projects.

A general approach towards ldentifying resources ana prices is
suggested by the methods of the previous subsection. The first step
involves careful formulation of the problem as an unconstrained resource
allocation problem., Next, we temporarily assume that all functions
are differentiable and that they satisfy thé appropriate concavity and
convexity requirements. Then we differentiate the objective function
with respect to each of the decision variables and set the result to
zero. At this point we have a set of simultaneous equations describing
the necessgary conditions for an optimum.

To iteratively solve this set of equations we can guess certaln
terms in these equations and then solve for the optimal allocation.

The selection of which terms to guess is a creative process whose
success depends upon the skill of the analyst. Finally, we formalize
the solution in the form of an algorithm. The results of this disser-
tation justify the application of the solution methods to problems

where the required differentiability and convexity assumptions are

not present.
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Several examples of the application of this method of identifying
resources and prices are contained in Boyd and Cazalet [ 6] and Boyd
[ 5]. The decomposition of the electrical power system example in
Chapter IV is a practical application of this method.

The general idea of defining new resources to account for inter-
actions between projects is not original. In economics, the problem
of interactions between decisions made in a market economy corresponds
to interactions between our projects. Those interactions that are not
appropriately priced by an economic market are called external or
neighborhood effects. Although it is often overlooked, one way of
accounting for these interactions is to define additional resources

+

and then set prices on these resources. Sometimes a new market
mechanism can be developed to set the price, or the price can be set

by political means. Usually, legislation is required to enforce payment
for these new resources. 1In a centralized resource allocation problem

nany of the practical difficulties inherent in defining new resources

for an economy, are absent.

Penalty Function Methods (Theorem I', Bounds, Algorithms and Discussion)

We have previously obgerved that the term XXj in the project

managers' problem

maximize r.(X.) - A\X.
x., € X. d d
J J

can be viewed as the penalty paid for the use of the resource. In our

+'Arrow [ 1] observes that externalities are simply a matter of the
classification of resources.
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discussion thus far, the penalty is a linear function of the amount
of the resource employed. 1In this subsectlion we investigate general
penalty functions where the penalty may be a nonlinear function of
the amount of resource employed.

Nonlinear penalty functlons are interesting for two reasons.
First, the study of nonlinear penalty functions provides insight into
linear penalty functions involving prices. Second, nonlineayr penalty
functions conceptually provide the means for resolving the problem
of gaps. 1In practice, however, nonlinear penalty functions have limited
value. The price of using nonlinear penalty functions is a reduction
in the degree of decomposition.

The following theorem provides the theoretical foundation for
general penalty function methods. Theorem I is a special case of

this theorem and both theorems apply to the single resource problem.
THEOREM I': If x maximizes
R(x) - P(x)

* .
over all x ¢ X, and if y meximizes

J
P(X)‘C ZY- P)
=1
over all y, and if

*
then x maximizes
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R(x) - c(

LLI

Xj)

J

over all X € X.

Proof: a) The theorem statement implies the following two inequal-

ities:
R(x) - P(x) < R(x) - P(x) (1)
holds for all x € X, and
P(y) - C(JE yj> < P(f) - C(E yf) (2)
j=1 j
holds for all y.

b) Combining inequalities (1) and (2) gives

IS

Rx) - P(x) + B(p) - ¢( D v;) SRE) - ) +B(r) - ¢f

J=1 J

which holds for all x ¢ X and all y.

c) Since (3) holds for all y, it must also hold for y = x

where x ¢ X. In this case, the terms involving P( ) on the left

side of (3) cancel and

w0 - of

Xj> < R(§*) - P(g%) + P(z%) - c:@%% Y%) (1)
i -

I )
Tt

holds for all x € X.

d) By the statement of the theorem,

* *
y =X

Thus, the terms involving P( ) on the right side of (&) cancel and
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x) < R(x') - c(%} xj) (5)

J=1

R(x) - c(

LT
Ny

J

holds for all x e X. Hence the theorem is proved.
J

This theorem is essentially Theorem I with A\ E; Xj replaced
j=1

by P(§). The theorem provides only sufficient conditions for an
optimal allocation and does not require any assumptions on the form
of the functions other than real-valuedness.
Some insight into general penalty functions is provided by the
graphical examples in Figure 2.6. As in Figure 2.3 we define
R(x) = mex R(x)
xeX

J
subject to z; X, =X
j=1 °

so that a two-dimensional presentation can be used.
Consider Figure 2.6(a). A particular penalty function P(y)+ is

illustrated by the dotted line. The first maximization problem in

Theorem I' is to maximize

R(x) - P(x)

where x must be chosen to satisfy the requirement that x e X.
Graphically, the equivalent problem is to choose the allocation x
that maximizes the vertical distance between R(x) and P(x). This
maximum occurs at X*. The second maximization problem in Theorem I'

is to maximize

P(y) - c(y)

+ This penalty function depends only on the total resources, y.
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over all y. Graphically, we maximize the vertical distance between
P(y) and C(y) in Figure 2.6(a). The optimal allocation for this
second subproblem is y*. In this case y* = X*. Thus, all of the
conditions of Theorem I' are satisfied and X* must be the optimal
allocation.

The problem illustrated in Figure 2.6(a) could not have been
solved by linear penalty function methods. If P( ) were linear,
then the dotted line would be straight. Under these conditions the
solution to the first maximization problem cannot be the optimal solu-
tion to the overall problem. In a previous subsection we described
this situation in terms of gaps. Figure 2.6(a) demonstrates that an
appropriate choice of a penalty function can resolve the problem of
gaps.

Figure 2.6(b) illustrates a case where the conditions of Theorem T'
are not satisfied because x% is not equal to y%. In Figure 2.6(c)
the application of the theorem is also unsuccessful. A successful
application of the theorem to a discrete problem is illustrated in
Figure 2.6(4).

General penalty functions also provide bounds on the optimal
profit during the course of an iterative search. The lower bound is
given by the best available solution obtained in the course of the

iterations. The upper bound is given by inequality (4) in the proof

of Theorem I. The bounds are stated formally below.

BOUNDS :

Let x' maximize
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over all x ¢ X, and let y' maximize

over all y. Lower and upper bounds on the optimal profit are given

by
J
7 on) el 1)
u 1 J 1 1 !
p = R(x') —c(jgiyj)m(g) - P(g)

The bagic algorithms for linear penalty functions carry over to
nonlinear penalty functions with minor changes. The successive approxi-

mations algorithm is as follows:

SUCCESSIVE APPROXIMATTIONS ALGORTITHM:
1. Guess an initial penalty function PO( )  subject to the
conditions discussed below.

2. Maximize

R(x) - Pn(x)

over all x ¢ X. Call the result E?'

3. Determine a new penalty function such that

) P(n+l)

| 4= g§ ¢(y) for jo=1, .u. ,J .
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n+l(x)

L, If P = PM(x) for all x ¢ X, then, subject to the

*
conditions discussed below, §é is equal to x, the

optimal allocation. Otherwise return to Step 2 using P( )n+l.

Linear penalty functions require that C( ) be convex and differ-
entiable if the structure of the successive approximations algorithm is
to satisfy conditions of Theorem I. The conditions of Theorem I1I' are

satisfied for nonlinear penalty functions if the function

J
®y) - o( 2 vy)

J

is concave and differentiable. If this condition is met, then the J
equations in Step 3 of the algorithm provide necessary and sufficient

conditions for yn to be the global solution to the following problem:

vs) -

For linear penalty functions the conditions are equivalent to assuming

maximize P(y) - C(
Y J

g

convexity and differentiability for ¢( ).

The conditions on P( ) and C( ) point out one of the inherent
practical difficulties associated with penalty functions. In order to
use penalty functions to probe gaps in & revenue function, the function

P( ) must be convex. If the combined function

is to be concave, then, loosely speaking C( ) must be '"more convex"
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than P( ). It is not always easy to find penalty functions with the
"right degree of convexity."

An alternative algorithm that satisfies the conditions of Theorem I°'
without restrictive assumptions is the penalty directive gradient
algorithm. This algorithm can only be described in terms of a para-
meterized set of penalty functions. TLet P{ ]E) be a set of penalty
functions with parameters B = (Bl, e BN). The penalty directive

gradient algorithm is as follows:

PENALTY DIRECTIVE GRADIENT ALGORITHM:

l. Guess an initial set of parameters BO.

2. Maximize

R(x) - P(x|g™)

over all X e X. Call the result §é.

5. Maximize

Pzle? - C<l ;)
J

1] [:\fj <y

over all y. Call the result XF'

Y, If % = yn, then the conditions of Theorem I' are satisfied

*
and g? is equal to x , the optimal solution. Otherwise,

compute a new set of parameters according to

n+l n 3 3
B =B +0 P(x|g)| _ - P(ylg)
m m BE; Zle Bn BE; Eé

This algorithm can be derived by applying a gradient search to

the problem of minimizing the upper bound. The upper bound is given by
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N J
p = R(x') - c<‘2‘:,L yJ’.)+ p(x'|g) - P(y'lg) .
J:

The rate of change (gradient) of the upper bound with respect to the

parameter Bm is given by

3% D > .
gng—BB—P(E 18) 'BB_P(X 8)

m m

The parameter adjustment formula in Step 4 of the algorithm moves the
vector of parameters in the direction of the gradient. In the case
of linear penalty functions only a single parameter, the price A, 1is
required.

The practical application of penalty function methods involves
compromises. From the point of view of decomposition, nonlinear penalty
functions are less desirable than linear penalty functions. A degree
of decomposition can be obtained by using separable penalty functions.
For example,

P(x) =
]

I 7

) pj(xj)

is separable over the set of projects. The penalty function pj(Xj)
involves only the amount of resource consumed by the jth project. Thus,
given the penalty functions, the allocation decisions can be made
independently. Unfortunately, the informational and computational
costs associated with N nonlinear penalty functions are much greater
than the costs associated with N linear penalty functions where only
a single parameter is involved.

The practical difficulties associated with penalty functions limit
their usefulness. In problems where gaps are important, penalty functions

58



may provide a solution. Sometimes restructuring the problem or looking
at the problem from a different point of view is superior to implementing
nonlinear penalfy functions.

The subject of penalty functions is also considered in the liter-
ature on constrained optimization. The general idea is to replace
constraints with penalty functions and then adjust the parameters of
the penalty function until the original constraints are satisfied.

The Tagrangian method described earlier in this section is recognized
as a special case of penalty function methods. Fiacco and McCormick
[14] provide a comprehensive treatment of penalty function methods in
constrained problems. Bellmore, Greenberg and Jarvis [3 ] provide a
clear discussion of penalty functions that includes a discussion of
gaps. Arrow and Hurwicz [2 ] discuss penalty functions from the point
of view of economic theory.

In constrained problems, penalty functions are useful because
they convert constrained problems into a series of unconstrained opti-
mization problems. Often the unconstrained problem is easier to solve.
Generally, decomposition is feasible only for linear penalty functions.
In the class of problems treated in this dissertation, the problem
is formulated as an unconstrained problem. Any computational benefits
from penalty functions applied to unconstrained problems must result

from decomposition.

2.2 Multiple Resource Problems with Separable Objective Functions

Generally, the results for single resource problems carry over
directly to multiple resource problems. In this section we will restate

the major results of Section 2.1 in terms of a multi-resource example.
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The Example

Consider the problem of allocating amounts of X resources among

J projects. ILet

Xjk = amount of the kth resource used by the jth project

where J=1, ... , J and k=1, ... , K.

x, = (Xlk’ cee XJk)’ a vector.
X. = (X. . X. a vector.+
_J ( Jl) 2 JK))
X100 Xips cee s X
x = |%e1’ ¥e2r vvc o Fox |, a matrix.
LXJl’ Xyoo ot 0 Egy

R(x) = total revemnue from all projects as a function of the

amount of each resource employed by each project.

In general,

Vv S total amount of the kth resource used by all J

projects. Thus

¥ = (yl, cee yK), a vector.
C(y) = total cost of all resources purchased in the resource

market.

+ The distinction between x. and x_ will usually be implied by the
context in which they are us%d in an equation.
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The resource allocation problem is to choose an x +to maximize

R(x) - c(y)

where x 1s chosen from a completely arbitrary set X.

Mathematical Results (Theorem IT, Bounds, and Algorithms)

*
THECOREM IT: If X  maximizes

k=1
% Jd
over all x e X, and if Iy = }; Xip k=1, ... , K maximizes
j=1 7
X
7 MY, - C(y)
Ay 12
k=1 Kk
«
over all y, then x maximizes
R(x) - ¢(y)

over all x e X.

The proof of this theorem is a straightforward extension of

Theorem T.

BOUNDS :

Let x' maximize

K J’
R(§) - E; kk[j 3 Xjk]

k=1

over all X ¢ X and let X' maximize
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over all y. A lower and upper bound on the optimal profit are given

by
2 J J J
p = R(x') - C!(_J le, 5 L3P DY ng) s
J=1 J=1 J=1
and
u K J
_ 1 _ 1 S H AN 1
p =RE") -c(y)+ 2 xk[yk 3 XJk] .
k=1 J=1

SUCCESSIVE APPROXIMATIONS ALGORITHM:
1. Guess an initial price vector, &p = (xl, .e. 5 A,) or start
with a trial y in Step 3.
2. Maximize
K

£ J
R(x) - >, x[}j x]
=1 Jk

over all x ¢ X. Call the result xn.

+
5. Calculate &F + according to

0
A, = c(y) k=1 K
L J > s P
k 5§k . §> .
koo gk
k=l,- ;K
n+1l n - . o
Yy, If A = N , then the conditions of Theorem IT are satisfied

*
and g? is equal to x , the optimal allocation. Otherwise,

+
return to Step 2 using xn l.

(the: C(Z) must be convex and differentiable for this algorithm.)
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PRICE DIRECTIVE GRADIENT ALGORITHM:

1. Guess an initial price vector, xo = (xl, cee 5 A

]

over all x e X. Call the result x .

2. Maximize

R(x) - %) xk[

k=1 * j

S

3. Maximize
X

A - ¢(y)

over all y. Call the result yn.

J
L. 18 ) X?k = yi for k=1, ... , K, then the conditions
J=1

_X_
of Theorem IT are satisfied and x is equal to X , the

+
optimal allocation. Otherwise, compute &é * according to

Kn+l _ Kn o n
e - Mk e ~

n
Xjk] k=1, ... , K

(where « 1is an appropriately chosen constant) and return

to Step 2.

Decomposition

In Section 2.1, decomposition was possible when the projects and
the set X had certain special structure. TFor multiple resourcesg,
decomposition of the project decisions is possible under the same

conditions. The required conditions are that the projects be independent,

J
R(x) = ) r.(x.)

j=1 97
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and

where

§j € Xj and X, é Xj for 1 % J .

Under these conditions, Step 2 of the algorithms becomes

K Q\ 0 J K
max[?(§) - g& xk[sz XJK}J= JE; max [rj(zﬂ) - E> xkxjk] .

xeX k j=1 j=1 x.eX. k=1
- —J J

In the general case, the resource market cost functions are dependent
and decomposition of one resource market from another is not directly
possible. When decomposition of the resource markets is not possible,
then, for example, Step 3 of the price directive gradient algorithm
involves a multi-dimensional search. Decomposition of the resource

markets is possible when

NGl

¢ly) = e, ()

=1

in which case Step 3 of the price directive gradient algorithm involves
only one-dimensional searches. Sometimes C(z) can be partially
decomposed. If a complete decomposition is not directly possible,

then it is often worthwhile to restructure the problem to permit

further decomposition.

Decision Variables

In the present formulation of our examples we have focused on
the resource allocation problem. In many problems, however, it is

useful to focus on the decisions that control the allocation of
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resources. In this subsection we will develop some notation that

emphasizes the distinction between a decision and the eventual allo-
cation of resources that depend on that decision. This distinction
is particularly important in problems involving time or uncertainty.

Tet

8. = vector of decision variables (policy) associated with

t
the J b project. The number of elements in 6.

need not be defined at this point.

Xjk(gj) = amount of the k> resource used by the jth project as

a function of 9..

2] = (Ql, cee Qj), a matrix giving the deéision policy
for the problem.
C) = set of all possible policies.

Using decision wvariables the resource allocation problem treated

in this section becomes

mex [R(9) - c(y(8))]
gco®

where yk(g) = 0.) k=1, ... , K.

%51l

NI

J

The total project revenue in the above formulation is now a function
of the project decision variables. Decomposition among projects is

possible when

J
R(8) = > r.(6.)
j=1 27
and
® =0,X "X 09;



2.3 Problems with Arbitrary Objective Functions

Tn this section we develop methods for treating resource allocation
problems where the obJjective function does not easily separate into
revenue and cost terms. In practical situations, arbitrary objective
functions are often the result of multiple measures of performance.+
For example, monetary profit may not be the only consideration in
evaluating a resource allocation. If the decision maker's value function
is defined over a number of measures of performance or outcome variables,
then the methods developed in this section are useful.

The results of this section show that problems with arbitrary
objective functions can be treated using methods similar to those
developed for problems with separable objective functions in Sections
2.1 and 2.2. The optimality theorem developed in this section provides
the theoretical basis for transforming problems with arbitrary objective
functions into problems with separable objective functions.

A fundamental approach to problems with complex preferences is
in Boyd [ 5]. He develops a methodology for assessing preferences in
complicated situations. 1In this dissertation we simply intend to
demonstrate that problems with arbitrary objective functions are con-

ceptually no more difficult than problems with separable objective

functions.

+'We use the term "arbitrary'" rather than the term "nonseparable” to
describe the objective function here because the methods of this section
also apply to and provide insight to problems with separable objective
functions as a trivial case. '
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Introduction to Ordinal Value Functions

An ordinal value function is used to encode a decision maker's
attitude towards the outcome of a deterministic resource allocation
problem. An arbitrary objective function usually is the direct result
of an ordinal value function or can be interpreted in terms of an
ordinal value function. This subsection provides a nonrigorous intro-
duction to ordinal value functions as motivation for the theoretical
study of decomposition under arbitrary objective functions.

The preferences of a decision maker can be described in terms
of the resources that can be identified in a problem. Only some of
the resources 1n a complex problem are of direct concern to the decision
maker. Resources can be classified as either primary or secondary
resources. Primary resources are those resources directly consumed
or valued by the decision maker. Secondary resources are resources
that are indirectly valued because they are useful in producing primary
resources.

Ordinal value functions are defined on the primary resources of
a problem. A useful graphical device in the study of ordinal value
functions is the indifference curve. Indifference curves are isovalue
curves defined on the space of primary resources.

Figure 2.7 provides an elementary example of indifference curves.
In this example the decision maker desires more of both resources x

1

and Xse Any two resource allocations lying on the same indifference
curve are said to have "equivalent value" to the decision maker.

Conceptually, indifference curves can be encoded by questioning

the decision maker. Only questions involving comparisons between pairs
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Note: the decision maker is
indifferent between the allocation
\ (a,a) and the allocation (b,b).

Figure.2.7: INDIFFERENCE CURVES



of regources are necessary. The preferences of the decision maker can
be completely encoded without defining an index or cardinal value
function which would assign unique numerical values to the resource
allocations.

Indifference curves specify a ranking of alternative resource
allocations. This ordering of the resource allocations is said to
be an ordinal ranking because there is no need to assign a unique
numerical value to the resource allocations.

From a computational point of view, it is often easier to maximize
an objective function than it is to work directly with indifference
curves. As long as the ordering of the ranking provided by the indiffer-
ence curves in unchanged we can arbitrarily assign numerical values
to the curves. If a function is used to assign the numerical values
it is called an ordinal value function. Usually, we can arrange things
so that the most preferred resource allocation also maximizes the
ordinal value function.

In problems where both monetary and other resources are involved,
the ordinal value function can be expressed in monetary terms. Where
money is not involved, the ordinal value function can be expressed
in equivalent units of one of the resources. In problems where time
is involved the ordinal value function can be expressed in terms of
an equivalent uniform flow.

This approach to the encoding of complex preferences has evolved
out of the economist's use of these mathematical tools. For a more

rigorous discussion of indifference curves and ordinal value functions
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from the general point of view of this introduction see Raiffa [25],
Pollard [24], Boyd and Matheson [ 8 ], and Boyd [ 5 ].

In this section the notation
v(z)

is used to denote an ordinal value function defined on the resource

}

vector z. The variables 2z and w denote primary resources while

the variables x and y denote secondary resources.

The Example

Consider the problem of selecting a resource allocation z to

maximize an ordinal value function V(g). We will employ the decision

variable notation introduced in Section 2.2. Iet

o = vector of decision variables (policy).

® = set of all possible policies.

zk(g) = amount of the kth primary resource as a function of the
policy 6. The problem structure relating decision
variables to secondary resources and secondary resources
to primary resources ils imbedded in this function.

E(g) = vector of primary resources as a function of the policy

6. Thus,

z(8) = (2,(8), -.. , 2,(8)) -

The resource allocation problem is to choose a policy 6 ¢ @ to

+ The indifference curves corresponding to V(E) are given by values
of z satisfying the equation, V(E) = constant, where the constant

is the numerical value assigned to an indifference curve.
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maximize
v(z(8)) .

The simplicity of the problem statement hides the structure
imbedded in this problem. Within this structure, secondary resources
can be identified. ILater, we will consider examples where the function
5(9) is separable into project revenue and resource market cost

functions. Most of the results of this section can be developed without

assuming a special structure for z(8).

Mathematical Results (Theorem III, Bounds, and Algorithms)

The following theorem applies to the example discussed in this

section:

*
THEOREM III: If © maximizes

*
over all 60 €@ , and if w maximizes

over all w, and if

%
then 6 maximizes

over all 6 ¢ g -
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Proof: a) The theorem statement implies the following two inequalities:

K K
D (@) < B (o) (1)
1 kK k K1 K"k
holds for all 6 ¢ ® , and
%} * %ﬁ *
v(w) - wow <V(w) - ) opw (2)

holds for all W.

b) Combining inequalities (1) and (2) gives

L AN N OFERC I SRR (5)
= =l

1 k
which holds for all w and all 6 eod.
c) since (3) holds for all w, it must also hold for w = z(6)

where 6 ¢ @ . In this case the terms involving by on the left side

of (3) cancel and

v(z(8) < V(a(8) - T wdw, - 5, (8")] (1)

1

T

holds for all 6 ¢ O .

d) By the statement of the theorem
* *
wo=z(8) .

Thus, terms involving “k on the right side of (5) cancel and the

inequality

v(z(6)) <v(z(8))
holds for all 6 ¢ @ . Hence, the theorem is proved.
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This theorem is a special case of Theorem II with minor changes

in notation and with R(x) = 0 and C(y) = -V(w). Thus, the dis-
cussion of Theorems I and II alsco applys to Theorem IIT.

Since Theorem III is not meaningful for a single resource, its
geometric interpretation is more difficult to visualize. In the case
where k = 2 the objective function V( ) defines a surface; the
height of the surface above the <Z1’Z2) plane is given by the numerical
value of the function. The set of resource allocations are points in
the (Zl,Zg) plane. The prices By and Ho define the slope of a
plane in three-dimensional space.

The first maximization problem in Theorem III is equivalent to
raising the plane from below the (Zl,Zg) plane until it touches an
element of the set of resource allocations in the (Zl,Zg) plane.

The second maximization problem 1s equivalent to lowering the same plane
until it touches the surface V( ). If the resource allocations deter-
mined by both maximization problems are the same, then the conditions

of the theorem are satisfied. Naturally, gaps may exist that prevent
the theorem from identifying the optimal solution.

The upper and lower bounds on the optimal value of the ordinal
objective function can be obtained during an iterative search. The
lower bound is given by the best available solution obtained in the
course of the iterations. The upper bound is given by inequality (L)

in the proof of Theorem III. The bounds are stated formally below:

BOUNDS &

Tet ©6!' maximize
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X
> w2z (0)
kel k k

over all 0 ¢ @ and let w' maximize

X
v(w) - > ww
- Kl K

over all w. Lower and upper bound on the optimal value of V( )

are given by

v o= v(z(9"))

K
VeVt - 3 (e - z(e0)
k=1

The successive approximations algorithm is particularly applicable
to problems with arbitrary objective functions because an ordinal value
function is usuvally both differentiable and concave. The successive
approximations algorithm follows from the statement of the necessary
and sufficient conditions for a solution to the second optimization

problem in Theorem IIT. The algorithm is as follows:

SUCCESSIVE APPROXIMATIONS ALGORITHM:
1. Guess an initial p, Ep or start with a trial z at Step 3.

2. Maximize
K n
Y w2 (0)
) k' 'k

over all Q e ® . (Call the result QF.

+ . .
5. Calculate a new vector xn * according to the relationship

Th



n+1 d
o) :WV(W) k=1, ... , K .
‘ kT lw=z(e)) o

(Note: v( ) must be concave and differentiable in this algorithm.)
+1
b, 1If un = Eé’ then the conditions of Theorem IIT are satisfied
*
and 6 is equal to 6 , the optimal policy. Otherwise,

+
return to Step 2 using EF l.

A relaxation constant can be applied in Step 3 to improve con-

vergence. In this case the new p 1s determined by the relationship

b = %v(w) Lot (l—o&)pi :

The price directive gradient algorithm is derived by applying a
gradient algorithm to minimize the upper bound on the arbitrary objective

function. The algorithm is as follows:

PRICE DIRECTIVE GRADIENT ALGORITHM:
1. Guess an initial p, H9°

2. Maximize

n
b 2 (8)

et

k

over all 6 € ® . Call the result Qé.

3. Maximize
X
V(w) - D uwW
- k=1 £ F

over all w, Call the result Eé'

Y., If wo o= Z(Qé), then the conditions of Theorem III are
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*
satisfied and Q? is equal to 6 , the optimal allocation.

Otherwise, compute a new value of p according to

n+l

by 2 +'d[wn -z

My Kk (8

where & 1is an appropriate constant and return to Step 2.

Decomposition

The computational effectiveness of the algorithms depends on
the relative difficulty of the original optimization problems and the
optimization problems imbedded in the algorithms. The optimization
problem in Step 2 of the algorithms has a special structure that the
original problem does not possess; the objective function of the problem
in Step 2 is separable. TFor problems with separable objective functions
we can draw on the theory developed in Sections 2.1 and 2.2.

To see how the theory for separable objective function can be

applied at this point, consider the case where

J J
2 (8) = 3 r. (8.) - ¢ (: X.(e.))
k= 521 Jk =3 k\s2) 790
for k=1, ... , K. The functions rjk(gj) describe the amount of

the primary resource Zy produced by project J. The projects consume
secondary resources Xj purchased in a resource market. The cost
of the secondary resources in terms of the primary resource is given

by Ck( ). In order to maximize
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over all € € @ , we can instead maximize

Tl €y) = My (85)

over all 6 € @ Wwhere = ®]_X cee X (DJ. The price xk can be

determined along with the price in Step 3 of the successive approxi-

He
mations algorithm or Step 4 of the price directive gradient algorithm.
Another alternative is to determine the prices on the primary resources

by the successive approximations algorithm and use the price directive

gradient algorithm to determine the prices on the secondary resources.

Organizational Interpretation

The results of this section can be interpreted in terms of a
decentralized organization similar to that discussed in Section 2.1.

The role of the impresario who is at the head of the organization
can be compared to the role of the resource managers. In Section 2.1,
the impresario was responsible for the organization, but delegated
the decision making to project managers and resource managers. With
arbitrary objective functions, the impresario assumes a more active
role gimilar to that of a resource manager.

In terms of the successive approximations algorithm the impresario’s
task is to asgign prices on the primary resources. If the impresario
has a complete description of the arbitrary objective function (ordinal
value function) then he sets the price of the resource equal to the
marginal value of the resource. If the impresario does not have a
complete description of the arbitrary objective function then it may

be easier for him to directly assign the prices rather than encode an
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ordinal objective function. Thus, the impresario can be viewed as
a primary resource manager. 0f course, he could also delegate this
task to a primary resource manager.

In a corporation the primary resources might be dividends, for
example. The flow of dividends over time would depend on the flow of
secondary resources over time. In this case, the arbitrary objective
function (ordinal value function) would describe the corporation's
time preference for dividends. The resulting vrices can be given an
interpretation as discount factors.

In a governmental example the vrimary resources would include
measures of social value. The social values would depend on the allo-

cation of other secondary resources. In this case, iteratively encoding

the prices might be simpler.

2.4 Relationship of the Mathematical Foundation to the Methodology

This chapter provides a mathematical foundation for the methodology
except for problems under uncertainty which are considered in Chapter
IV. We will now discuss how the mathematical results fit into the
overall methodology.

Using the methodology & decision problem is analyzed in two main
steps. The first step is to carefully structure the problem and to
identify the special structure required for decomposition. The second

step is to justify the decomposition methods resulting from the first

+ The observation that preferences can be encoded directly in terms of
prices provides an approach to the assessment of preferences in complex
situations. Often it is easier to iteratively assess the prices rather
than to directly encode an ordinal value function. This approach is
developed in detail by Boyd [5].

78



step by applying the mathematical foundations developed in this chapter.

The first step of the methodology requires creativity on the part
of the analyst. Nevertheless, a general approach to structuring a
problem is roughly as follows: First, formulate the decision problem
as an unconstrained optimization problem. This means that the sources
of resources are carefully modeled rather than simply limiting the
availability of the resource. Also, the preferences of the decision
maker are carefully structured rather than eliminating certain outcomes
from consideration. Then, determine the necessary conditions for an
optimal solution to the problem by temporarily assuming the methods
of elementary calculus are valid for the problem. Generally, this
temporary assumption will not be wvalid, but the mathematical results
developed in this chapter can be applied later to justify the resulting
decomposition.

As indicated in Section 2.1, the necessary conditions for an
optimal solution to a decision problem result in a set of simultaneous
equations. These equations usually can be solved iteratively by
guessing certain terms in the equations and solving the equations
one~-by-one. The terms initially guessed are calculated from the solu-
tions to the equations. TIf the guesses are correct then the optimal
solution 1s available; otherwise use the new values of these terms to
solve the equations again. Generally, the terms which are initially
guessed can be interpreted as prices.

The iterative solution of the necessary conditions suggests a
successive approximations algorithm for solving the problem. At this

point, the analyst may review his formulation of the problem and

79



method of solution. Often, by viewing the problem in another way or
by solving the simultaneous equations differently, a better successive
approximations algorithm can be devised. Generally, the analyst should
attempt to minimize the number of resocurce markets in the problem so
that only a few prices are used to coordinate the solution of a large
number of subproblems or projects. The organizational interpretations
of decomposition are particularly useful in providing insight into
new ways to structure and solyve a problem.

The second step in the methodology justifys the solution method
in situations where the assumptions used in obtaining the necessary
conditions are not valid. The mathematical results developed in this
chapter can be applied by combining the results of the wvarious theorems
to solve the more complicated problems. In addition to justifying a
method of solving a given problem, the mathematical results also provide
additional algorithms and bounds on the value of the optimal solution.

Another way the mathematical results can be applied 1s to derive
a new optimality theorem for the varticular problem being analyzed.
Usually, an optimality theorem can be stated once the successive
approximations algorithm is developed in the first step of the metho-
dology. The proofs of the optimality theorems developed in this chapter
are simple and new optimality theorems can be easily proved for particular
problems by following the same procedure used in proving the present
theorems.

We have seen that the methodology developed in this dissertation

combines the creativity of the analyst with a mathematical foundation
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for decomposition. In the next chapter, we demonstrate this methodology

on & complex electyrical power system problem.
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CHAPTER IIT

AN ELECTRICAL POWER SYSTEM PLANNING PROBLEM

A dval purpose is intended for the example presented in this
chapter. The first purpose of the example is to provide an effective
medium for communicating some aspects of the methodology developed in
this dissertation. The second purpose of the example is to develop
new power system planning methods.

This chapter is written so that a person unfamiliar with the
technical details of power systems can follow the logical development
of the model. 1In Section 5.1 we point out that power system planning
is complicated by the technical interactions between plants. These
interactions are visible as the transmission lines which interconnect
generating plants to serve a common market for electricity. In
Section 3.2, the previous work on the example is discussed. Section
3.5 develops the model of the electrical system in detail. The inter-
actions between plants are highlighted in the development of the model.
The structure of the model permits very general submodels of the
generating plants and other elements of the system.

In Section 3.4 decomposition of the problem is discussed. An
important part of this section concerns the development of a sequential
algorithm to overcome the effect of gaps without requiring penalty
functions.

A numerical example is presented in Section 3.5. The data assump-

tions and computer program are explained. The results of the numerical
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example clearly demonstrate the practical value of the methodology
developed in this dissertation. Finally, Sections 3.6 and 3.7 summarize
the conclusions based on the model and suggest several directions for

extending the scope of the model.

3.1 Introduction to Electrical Power System Planning

Electrical power system planning includes both strategic invest-
ment decislons and tactical operating decisions. In the analysis of
investment decisions it is only necessary to treat the strategic decisions
in detail. Tactical decisions need be considered only to the extent
that they affect strategic decisions. In this chapter we focus on
strategic decisions concerned with the installation of new generating
plants.

Power system planning is a complex problem. The complexity of
the problem is due, in part, to the following considerations:

1. Ixtended planning horizons are regquired in an analysis because
of the long lifetimes of the expensive capital egquipment
used in power systems.

2. A detailed model of the entire system is required to evaluate
capacity investments because of the complex technical inter-
actions between generating plants in an interconnected power
system.

For example, consider capital investments in generating equipment.

The decision involves selection of a mix of plant types and plant sizes
to be installed in an existing system. An analysis of such decisions
requires extended planning horizons because some types of generating

equipment operate for sixty years or longer. Technical interactions
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occur, for instance, because the quantity of fuel burned by a plant
depends on the operation of all other plants by virtue of their inter-
connection to serve a common market for electricity. Technical inter-
actions also occur because the system reliability depends in a complex
way on the reliability of each plant.

The large number of possible combinations of individual plants in
the long planning period makes optimization very difficult in power
system planning. Decomposition and iteration are particularly useful
in resolving such combinatorial problems. To achieve decomposition
requires careful structuring of the problem to account for the inter-
actions between plants. Before structuring the power system model we

will summarize the previous work on the example.

5.2 Introduction to the Planning Example

Development of a detailed planning model for an electrical power
system requires many man-years of effort. For this reason, the planning
example is based on a model developed for a previous analysis of the
same problem. The contribution of this chapter is to reformulate the
model so that it can be decomposed.

The original analysis was performed for the govermment of Mexico
[10]. The analysis considered the capacity expansion of the Mexican
electrical power system. The emphasis of the analysis was on the
development of a flexible planning tool and the installation of nuclear
power plants in the middle 1970's.

The original analysis involved representatives of the Mexican

electrical system and decision analysts from Stanford Research Institute.
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The Mexican team took responsibility for assuring that the data and
model of the electrical system were adequate for the analysis. The
SRI team was responsible for the decision methodology. The following
discussion indicates the scope and détail incorporated in the original
analysis.

Figure 3.1 is a block diagram that summarizes the original model
of the Mexican electrical system.

The analysis concerned the installation of the first nuclear
plant in the middle 1970's. This first decision is made in the context
of the overall installation and operating policy of the systen.

The environment of the system is described by financial models,
energy models, technology models, and electrical demand models. Given
an installation and operating policy a time stream of outputs is pro-
duced by the model of the electrical system. Some of the outputs,
like consumption of electricity, combine with price to yield & book
profit for operation. The book profit is adjusted for quality of
service as measured by outages to produce system profit.

Since the Mexican power system is a government monopoly, it is
influenced by measures other than profit alone. Certain outputs other
than electricity are produced by the system operation: these outputs
may have either positive or negative values to Mexico. If these outputs
are valued quantitatively, then a social value function that shows the
social profit (or loss) generated by the system in addition to system
profit can be realized. The combination of the two would be national
profit. The time preference of Mexico would then be applied to this

time stream of national profit to see which policy produces the highest
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value. The result is a single measure of value that could be used in
assessing any system policy, and in particular the decision regarding
the first nuclear decision.

The original analysis required a number of approximating assump-
tions. The most significant assumption is the representation of the
system as if it were concentrated as a single geographical point.

Thus transmigssion effects and alternatives were not explicitly con-
sidered.

The original analysis did not explicitly treat the relationship
between the demand for electricity and the gquality of service and
price. A forecast of demand based on predicted service and pricing
policies was used. In addition, certainty was assumed for all forecasts
except plant failures, stream flows, and short-term forecasts of demand.

These and other assumptions were thought to be reasonable in terms
of an analysis of the first nuclear installation. The computational
advances provided in this dissertation should reduce the need for
such assumptions in future analyses of this type.

The main factor limiting the scope of the original analysis was
the ability of the analysts to formulate, program, and solve a complex
system model. The model of the electrical system in the center of
Figure 5.1 had to be quite detailed in order to capture the important
interactions between individuval plants. It was not desirable to
translate the model into a linear or nonlinear programming format
because of the restrictive assumptions that would be required. The
large number of alternative policies and discrete nature of the alter-

natives prevented the direct use of gradient search methods. Other
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methods also seemed to have similar difficulties.

The approach to optimization taken in the original analysis was
to generate trial policies by heuristic methods and select the policy
having the highest measure of valuve. Eventuvally, a policy generation
routine evolved that installed plants on the basis of an approximation
to the incremental value of the plant. The approximate value of a
plant was computed from readily available information and parameters
which can be interpreted as prices. These prices were s&t by an
iterative process.

The intuitive optimization ideas described above were developed
without a firm theoretical foundation. The lack of theoretical tools
for problems of this type motivated the author's research in this
area. The results of this dissertation are mechanically quite different
from the methods of the original analysis but are very similar in the

general approach to optimization.

3.3 TFormulation of the Planning Example

In formulating the planning example it is useful to suppress many
of the details of the electrical system model that do not cause diffi-
culty in decomposing the problem. For example, social values are not
explicitly treated in the planning example because it turns out that
the social values treated in the original analysis can be accounted
for by modifications to the parameters of the model that we will

il

describe.

+ In situations where social values are more critical, the methods
developed in Section 2.3 for problems with multiple measures of per-
formance are applicable.

88



Our decision problem is to choose an installation policy for
the expansion of the electrical system. By a policy we mean a complete
list of plants to be installed over the planning period of the analysis.
Actually, the only decision to be based on the analysis is the next
installation in time; the model can be rerun before the decision on
the second installation is made. Thus, some approximation in the policy
for installations beyond the first installation is reasonable.

In order to describe the problem mathematically the following nota-

tion is used. Let

6 = an installation policy. Given a policy 6 a complete
technical description of each plant installed by the

It

policy 1s available.” The plants in a policy are
indexed by the integers 1, ... , J where J is

the maximum number of plants in a policy. Thus

where Qj describes the jth plant in policy 6.

0 = gset of all possible installation policies. In Section
3.3 the properties required of this set for decompo-
sition are discussed.

T = horizon of planning period (t =0, ... , T).

+

3
N
©
p—
In

overall (national) profit’ from the operation of the

system in period t while under policy 6.

T

# Including the installation date of the plant.

See Figure 3.1.
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VT+1(9) = terminal value of the system after horizon year T

under policy 6.

The decision problem is to select a policy 6 ¢ @ to maximize

the present value of profit given by

A +3

v(e) = 7, (€) + 7 Vo, (6)

_f\ NS
£=0 T+1 T+1

where the 7t's are discount factors that reflect the time preference

of the decision maker.+
The overall profit W%(Q) is composed of a number of revenue and

cost cash flows. A separate model for each cash flow is developed in

this section. Given a policy, each cash flow is assumed to be inde-

pendent of the other cash flows. Notationally, let

RJG = revenue received by the system in period €+ due to charges
for the electrical energy delivered. The revernue is

independent of the installation policy in this example.

Ft(g) = fixed operating cost of the system in period +t under
policy 6.  This cost includes the cost of routine
maintenance, staff, and other overhead of the system.

Ot(Q) = variable operating cost of the system in period +t under

policy 6. This cost covers the cost of fuel and other
expenses that depend on the amount of electrical energy

generated.

+.A more fundamental approach to time preference was discussed in
Section 2.3. In terms of the more fundamental approach, the discount
factor 7 can be viewed as the price at which the decision maker will
trade uni%s of profit in the initial period for units of profit in
period t. The assumption implied by the present value model is that
the price 7t is insensitive to the flow of profits.

90



Ct(g) = reliability outage charge in period +t wunder policy 6.
this cost is a paper or actual adjustment to the books
of the system to account for the quality of service as
measured by outages.

It(g) = installation cost of plants in period +t under policy

8. This cost is the cash flow required to purchase

generating equipment. The cash flow includes the effects

of financing.

The overall profit in each period is simply the revenue less

the sum of the costs and is given by

T.(8) =R, - F.(8) - 0.(8) -¢C.(8) -I(8), t=0, ..., T.

The models underlying these functions are structured in the following

subsections.

Revenue Model

Revenue from the sale of electrical energy and demand for elec-
tricity are assumed to be independent of the installation policy in

this model. The purpose of including a reverue model is to retain the

objective of profit maximization. Although cost minimization is mathe-

matically equivalent in this case, the inclusion of a revenue model

makes explicit assumptions that might remain hidden if cosgt minimization

were the objective.
The major source of revenue for a power system 1s from the sale

of electrical energy to the system's customers. ILet
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pt price of electrical energy in period t in
dollars per megawatt hour (S/MW—hr)
5%;5 average demand+ in period t (MW)

A = number of hours per period (hr).
The revenue 1s given by

Rt = ptdﬁé .

The price of electricity pt is fictitious since the distribution
system is not modeled. The price can be viewed as accounting price
charged by the generating system for energy delivered to the distri-
bution system.

The important assumption in this revenue model is that demand is
independent of the installation policy. In a more detailed model we
would be interested in the effect of price and the quality of service
on the demand. Demand forecasting is discussed in Section 3.6 and

Chapter yv. The amount of revenue lost as a result of outages is

accounted for in the reliability outage charge model.

Fixed Operating Cost Model

The fixed operating cost model accounts for the cost of maintenance,
operating staff, and other overhead charges associated with the operation

of the system. We assume that the fixed operating cost of a plant is

% The demand for electricity in industry parlance is the instantaneous
rate at which energy is supplied by the system. Thus, average demand
during a period multiplied by the duration of the period is equal to
the total energy supplied during the period.
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independent of effects attributable to other plants in the system.
Hence, the fixed operating cost of the system during period t is
the sum of the fixed operating costs of the plants installed in the

system in period +t. The fixed operating cost is given by

R (6) = 3 £.(6,0,)

g

where
. . . . .th
fj(t,ej) = fixed operating cost in period t of

plant in policy - 6.

This formulation of the model permits the use of completely
arbitrary functions (except for the independence between plants) to
describe fixed operating cost: In general, the fixed operating cost
of a plant depends both on the technology of the plant at the time
of installation and on changes in the prices of materials and labor
over the life of the plant. Specific examples of fixed operating cost

models are developed for the numerical example in Section 3.5.

Variable Operating Cost Model

The variable operating cost model accounts for expenditures that
depend on the amount of energy delivered by the system. The variable
operating cost is affected by the variations in demand, the proportions

of the wvarious types and sizes of plants in the system, and the oper-

il

ating policy.

+'Very sophisticated models and optimization technigques have been
developed for the economic operation of a power system. At the level

of strategic planning of installations the model developed in this
section appears to be adequate. In a full-scale analysis a more detailed
model could be used to check the accuracy of this model.
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In the following model the demand for electricity is characterized
geparately from the characterization of the cost of meeting the demand.
First, we consider the demand model.

The demand (rate of energy flow) for electricity depends on the
time of day, day of week, season, year, and random events such as
weather. For strategic planning purposes we can represent the fluctu-
ations in demand during a period by a lodd duration curve (Figure 3.2)
or a demand frequency distribution (Figure 3.3).

The load duration curve gives the fraction of time (probability)
that demand in a particular period is at least of a given magnitude.
The demand frequency distribution ig the derivative of the load duration
curve and can be viewed as a probability density function. In Chapter
V uncertainty is treated in more detail; at present, a frequency inter-
pretation of probability is adequate.

At this point, we can allow the demand freguency distribution for

a given period to be completely arbitrary. Thus, let

g%(d) = frequency distribution on demand in period t where

the area under gi(d) is unity, by definition.

Characterization of the instantaneous operating cost as a function
of demand is more difficult. Pigures 3.4 and 3.5 show two related
characterizations of the operating cost of a hypothetical system.

Each plant in the system is represented by a vertical bar in
Figure 3.4. The heights of the vertical bars are proportional to the
operating cost per unit of output of the plants; short bars indicate

the plants with the lowest operating cost per MWh produced.

Ol



1.0
0.5
0.0

T9A9T UDATS B BULPO9OXd
puerwap Jo ‘A1TTTqeqoxd

demand (MW)

Figure 3.2: LOAD DURATION CURVE

»

pUBWSP UO UOTIOUNT
A31suep A3TTTqeqoxad

demand (MW)

Figure 3.3: DEMAND FREQUENCY CURVE

95



marginal system hourly operating cost

total hourly system operating cost

$ /MW-hr

#L| #2 | #3 | #4

> d
demand - (MW)
Figure 3.4: MARGINAL HOURLY OPERATING COST OF PLANTS
N
p—
4/
/
///
/)(f
"
o
~
r
. d

demand (MW)

Figure 3.5: SYSTEM HOURLY OPERATING COST
9%



For strategic planning purposes 1t is reasonable to assume an
operating policy that loads plants in order of efficiency; the most
efficient plants provide most of the energy. Thus, Figure 3.4 is
also a graph of the marginal operating cost of the system (cost of
satisfying an additional unit of demand).

The system hourly operating cost function is shown in Figure 3.5.
This function is obtained from Figure 3.4 by integration.

A detailed description of the system hourly operating cost such
as in Figure 3.5 requires knowledge of the hourly operating cost and
capacity of each plant in the system. TFor reasons that will become
clear in Section 3.4, it is necessary to characterize the system hourly
operating cost in terms of a few parameters. Furthermore, these para-
meters should be determined by a summation of the parameters describing
the independent plants in the system. The remainder of this subsection
is devoted to characterizing the system hourly operating cost in this
wWay .

In an electrical system there are four major types of plants.

They are:

1. gas turbines - low capital cost but high operating cost

2. conventional thermal - medium capital cost and medium oper-

ating cost

3. nuclear - high capital cost but low operating cost

L. hydro - very high capital cost, negligible operating cost,

but limited availability of sites and energy.
Hydro plants are treated as a special case in the model described

below.
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The variation in hourly operating cost among plants of the same
type is relatively small compared to the variation in operating costs
among plant types. Thus, the system hourly operating cost is adequately
described by the total capacity and average hourly operating cost of
each type of plant.+ '

Figures 3.6 and 3.7 show the marginal system hourly operating cost

and the total system hourly operating cost curves as a function of

demand where the curves are parameterized as follows:

x, = amount of capacity of the jth type in the system (MW).

I = number of types of plants in the system. Usually I =3
where 1 = 1,2,3 represents nuclear, conventional thermal
and gas turbine respectively (note that hydro is not in-
cluded at this point).

h. = total hourly operating cost of all plants of the ith type

(8 /nr).

The advantages of this characterization of the system hourly
operating cost is that the parameters Xi and. hi are easgily calcu-

lated from the technical descriptions of the plants. TLet

cij(t,ej) = available capacity of the ith type of plant in period

t from the jth plant in policy 6 (MW).

Kij(t,ej) hourly operating cost of the ;o0 type of plant in

period + from the jth plant in policy 6 ($/hr).

¥ifhis assumption could be checked by comparing the results of this
model with a more detailed model or results of actual system operation
where available.
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Both of these functions are defined to be zero if the index 1 does

not correspond to plant j!

s type. The dependence on t can be
used to account for the effects of maintenance during a period, trends
in the performance of installed plants over time, and trends in the

prices of fuels over time. The parameters of the system hourly oper-

ating cost function are given by

J
x., = r, c..(%,0.) i=1, ... , I, t =0, «v. , T,
it 521 ij J
and
J
h., = S\K(t;e) i=1, > I, t=0, ... , T,
it 521 1J J

where a subscript has been added to the parameters of the system hourly
operating cost function to indicate the period. The system hourly

operating cost function can be written as

1, (dlx, (8),n,(6))
where
Et(g) = (xit(g), cen XIt(g)), vector of total available capaci-

ties of each type in period +t.

E%(Q) (h. (8), «uv , hIt(g)), vector of total hourly operating

iy —
costs of each type in period t.

In Section 3.k we will often find it useful to write

x,(8) = % _C_j(t,ej) t =0, «uu , T

and

=
=
1l
I
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where

It

I_l
¥
¥

I
¥

Eﬁ(t;ej) = (Clj(t’ej)’ R cIj(t’ej)) J

(Kla(t’ej)’ 0 KIJ(t,eJ)) J

Il

|_l
¥
¥

I

K.(t,6.
K (5,6,)

Models of both the demand and the cost of meeting the demand have
now been developed. The system variable operating cost in period t

is given by

Ot(g) = Ot(§t(g);ﬁt(€))
where

0,(x,(8),0,(8)) = A - J;Ht<dl>_<t<g>,gt<_e_)gi<d> .

This computation essentially involves weighting the system hourly
operating cost function for each demand level by the fraction of the
time the system is at that demand level.

Hydro plants are treated as a special cage because the total
amount of energy available from a plant during a given period is limited
by the available water flow and water storage capacity. We will model
hydro plants as a source of energy that is used to reducé the demand
placed on the thermal (non-hydro) plants.

Figures 3.8 and 3.9 illustrate a method of operating hydro plants

that is reasonable for strategic planning purposes. Let

x,. = amount of hydro generating capacity in the system (MW)

0

+ The generalized integration symbol .r implies summation when the
variables are defined on discrete sets. Integration is implied when
the sets are continuous.
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ho = total available hydro energy during a given period (MW-hr).+

The shaded area in Figure 3.8 represents the available hydro energy
divided by the total energy requirements. The hydro energy is used
most effectively when it displaces the least efficient thermal plants

#

that operate at times of high demand.  Graphically, the best operating
policy for hydro plants is found by moving the indicated regions of
Figures 3.8 and 3.9 as far to the right as is possible while still
employing all of the hydro energy, ho. At some point, further movement
of the shaded area to the right will be limited by the available hydro
capacity XO'
The allocation of hydro energy by the method described above is
easily implemented in a computer model in terms of the operation pictured
in Figure 35.9. 1In relation to the allocation of thermal energy, the
hydro energy simply removes a section from the frequency distribution
on demand used to calculate the system variable operating cost.
The variable operating cost model with hydro included can be

described in the same notation. The period system variable operating

cost is given by

where
Et(g) = (xot(g), cee xIt(Q)), vector of total available capaci-

ties of each type in period t.

+ Uncertainty in the available hydro energy due to uncertainty concerning
the weather could be incorporated in this model.

# The idea is to use up all of the hydro energy and at the same time have
the full hydro capacity available for meeting the peak demands.
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8) = (h

t(— Ot(g)’ cee hIt(Q)), vector of (1) total hourly

operating cost of plant types 1, ... , I; and (2)
total available hydro energy in the case of type O,
in period t.

The parameters of this variable operating cost model are given as

before by
d
Et(ﬁ) = X Ej(t,ej) t =0, ... , T,
=1
<
Et(?.)= o Ej(t:ej) t =0, «o.. , T,
=1
where Ej(t’ej) and Eﬂ(t,ej) have an additional component for hydro
and Koj(t,ej) refers to available hydro energy of the jth plant in

period t rather than the hourly operating cost which is zero for
hydro.

In certain situations the demand for energy can exceed the combined
energies avallable from all plants in the system. Normally, reliability
considerations will assure sufficient peaking capacity. Hydro plants,
however, have the characteristic that theilr peaking capacity often
exceeds their sustainable generating capacity. If sufficient energy
is not available to meet demand, then an energy deficit is said to
occur.

An energy deficit involves monetary costs and inconvenience to
the system's customers. The situation is not as serious as outages
caused by sudden plant failures; presumably, an energy deficit can
be forecasted in advance. One way to account for the costs imposed

by an energy deficit is to assign a price to the energy not supplied
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as a result of energy deficits. This price will be greater than the
variable operating cost of the least efficient plants, but less than
the price assigned to reliability energy losses.

In terms of the model, the cost of an energy deficit can be added
to the variable system operating cost. The energy deficit is simply:
The energy is not supplied after all available plants have been allo-
cated. The cost of an energy deficit is the price assigned to a deficit

times the energy not supplied.

Reliability Outage Charge Model

In this subsection a model of system reliability is developed.
The model is unidue because it provides an economic measure of reliability.
The more usual approach to the analysis of reliability results in a
technical measure of reliability such as "probability of loss of load."
In an analysis of installation decisions the technical measure of
reliability is often constrained to be above or below a given level.
Alternatively, an economic measure of reliability avoids all the dis-
advantages of artificial constraints that are discussed in Section 2.1.

For strategic installation planning a reasonable economic measure
of reliability is an outage charge based on the energy demanded but
not supplied (energy loss) because of insufficient available generating
capacity. In the original analysis a price on energy loss was deter-
mined from a previous analysis of the overall Mexican economy.

The outage charge for a given period is an uncertain guantity.
In this analysis, average (expected value) outage charge is used as

the economic measure of reliability. The average outage charge in
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period t wunder installation policy 6 1is given by

¢ (8) = 9y & ey
where

price on energy loss ($/Mi-hr),

S
C'-
i

A = duration of period (hrs),
= average capacity deficit (MW).
Thus the average energy loss in period t is AE£.

At a given instant in period 1,

€ = dt - ct
where
e, = capacity deficit (M),
dt = demand (MW),
c, = available capacity (Mw) .

The average capacity deficit depends on the probability distribution

on capacity and the demand frequency distribution according to the

relation
- _ c a
¢,d
d>c
where

gf;(ol 0) = probability distribution on available capacity in period
t under installation policy 6.

g%(d) = demand frequency distribution for period +t. This dis-
tribution is identical to the demand model used for
computing variable operating cost in the previous

subsection.
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The generalized integration required above is performed over the portion
of the sample space where demand exceeds available capacity.

The probability distribution on available capacity is determined
from the probability distribution on capacity of each plant in the
system. Iach plant in the system is assumed to be statistically inde-
pendent of all other plants with regard to forced outages. Mathematical
convolution can be used to obtain the system capacity distribution from
the independent plant capacity distributions [ 9 ].

For decomposition we would like to parameterize the system capacity
distribution so that the parameters are obtained by a summation of
parameters describing the individual plants (similar to the parametri-
zation of the system hourly operating cost in the previous subsection).
Three possible parameters are obvious: the total available (nameplate)
capacity, average available capacity, and variance of the available
capacity can be computed by summations of the total, average and variance
of the available plant capacities. Further varameters having the same
mathematical characteristics (additivity for independent distributions)
are given by the cumulants of the probability distributions [16].

The reliability model in the original analysis used convolution
for determining the system capacity distribution. The probability
distribution on available capacity of each plant is represented by a
Bernoulli probability distribution where the probability of failure

of a plant is defined by the ratio

time on forced outage
time on forced outage + time available for operation °
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The failure probabillities are assigned on the basis of both historical
and subjective information. The system capacity distribution is obtained
from the Bernoulli probability distributions by numerical convolution
with minor approximations to account for the irregular sizes of plants.

A rough empirical analysis of the results of the original analysis
shows that a three parameter characterization of the system capacity
distribution is adequate. The Weibull and Gamma distribution are two
distributions that provide a close visual fit to the probability dis-
tributions generated in the original analysis. In order to determine
the appropriate distributions for other power systems, a detailed
analysis using convolution would have to be performed.

Based on the previous discussion the average outage charge is

given by
0,(8) = 0,(x,(8),%,(8),%,(9))
- Cfo1 (a-c)ef(clx, (8) %, (8) %, (8)ef(a)
d>c
where

x _(8) =total installed capacity in period +t wunder policy 6.
t(9) = average available capacity in period t under policy 9.
(8) = variance of available capacity in period +t under policy
9.

(8) are computéd as follows:

The parameters xt(g), E%(Q) and. ¥t 6

J
8) = ;5_ Cj(tyej)
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where

cj(t,ej) = installed capacity in period t of the jth plant

in policy 6.

Eﬁ(t,ej) = average available capacity in period t+ of the jth
plant in policy 6.
é.(t,ej) = variance of available capacity in period t of the

J

jth plant in policy .

The functions o (%,8,), T (t,0,) and Xj(t,ej) allow the probability
distributions on the plant capacities to be completely general functions
of time. Thus, maintenance, break-in periods of low reliability, and
the effects of age can be accounted for within this model.

Another important effect that is easily incorporated into the
reliability model is short-term uncertainty in demand. Short-term
uncertainty in demand can be expressed in terms of a probability dis-
tribution on the parameters of the load dugation curve for a given
period. The time at which the probability distribution is assigned
is at the last opportunity to install new capacity to be operated
in the given period. The load duration curve and the probability
distribution on the parameters of the load duration curve can be com-
bined into a new load duration curve by integrating over the parameters
of the load duration curve. The resulting curve is used in the model

in the same way as the original curve. Generally, the new curve will
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have a sharper peak and a lower load factor. In Chapter VI we discuss

power system planning under uncertainty in more detail.

Installation Cost Model

The installation cost model determines the cash flow resulting
from the capital costs of new generating edquipment. In this model
the installation cost cash flows are assumed to be independent among
plants. This assumption is valid if the method of financing a plant
does not affect the rate or amount of financing on all other plants.

The total installation cost cash flow in period t is given

by

e

I‘t(g) = yj(t,ej)

J=1
where
yj(t,Qj) = installation cost cash flow in period t for the
jth plant in policy 6.
The functions yj(t,ej) include the effects of financing. Hence,
these functions account for construction costs, funds borrowed, and

interest and principle on debt. Within these functions, extremely

general financial models are possible.

Terminal Value Model

The terminal value model assigns an approximate value to the
system at the end of the planning period. A good terminal value model
often greatly reduces the cost of an analysis by reducing the number
of periods requiring detailed analysis.

A terminal value model is difficult to construct because a fully
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accurate model is as complicated as the entire system model. Clearly,
only a rough approximation is reasonable. The effects of the terminal
value model can be checked by sensitivity analysis.

We will approximate the terminal value of the system by assigning
independent terminal values to individual plants. Thus, the terminal

value of the system in period T + 1 wunder policy 6 1is given by

(0 = 3 v (12,6,)

VT+1

g

J

where
vj(T+l,9j) = terminal value in period T + 1 assigned to the jth
plant in policy Q.
The terminal values might be assigned on the basis of the type,
size and age of the plant at the horizon. The terminal value of the

plant includes the remaining installation cost cash flows discounted

to the period T + 1 at an appropriate discount rate.

3.4 Decomposition of the Planning Example

The planning example formulated in Section 3.3 can be stated in
a form similar to that used for the multi-resource problem in Section

2.2. The decision problem is to select a policy 6 € ® to maximize

T J
> 7 AR, - % [£.(%,0.) +y.(t,0.)]
=0 °|t 4oL 99 3t
J J
- ot(‘z, e (4,0, % Ej(t:ej))
55 9 37 55
J J v
- Ct(z cJ(t,GJ), > c (t,ej), >, cJ(t,@J))
j:l J:l J::l
o
Vo &V (T+1,6.)
Jj=1
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In this form, Theorem II in Section 2.2 applies directly to this
problem.

The formulation of this power system model to the’point where
Theorem II can be applied is a creative process. The model is degcribed
in Section 3.3 with the benefit of hindsight. One of the useful tools
in decomposing this problem was to formulate the necessary conditions
and proceed as suggested in Section 2.1.

Decomposition of the problem requires that the policy set ©® Dbe

separable, i.e.,

In terms of the planning example, this condition requires that the
availability of a plant for installation be independent of the instal-
lation of other plants. However, by restructuring the problem even

this limitation can be overcome, if necessary.

Successive Approximations Algorithm

Once the problem is described in the form used above, the results
of Section 2.2 can be applied (or rederived) with very little effort.
The successive approximations algorithm is particularly interesting at
this point because of the insight it provides. For example, an economic
definition of the prices is given by Step 3 of the successive approxi-

mations algorithm.

SUCCESSIVE APPROXIMATIONS ALGORITHM:
1. HEstimate initial prices

+ 0 t=0, «.. , T,
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C

Kt: t =0, -, T,

¢

Kt: t=0, ... , T,

ocC .

}\.i_t, ‘t=O, .o s ,T, .—.L:O, o e ,I,
oh

}\.i_t, t=O, L) T, l=O, c e F] I,

or start with a trial policy at Step 3.

2. Maximize

T
S 4-£.(1,6.) - v.(t,6.)
£=0 t] J J J
c c Y
6. c. )+ Ac. )
+ xtcj(t, J) + xth(t,GJ) xtca(t,QJ)
£ oc oh
+ s c,. . K. . .
over all Gj €0 5 Repeat for j =1, ... , J. Call the
results 6?.

3. Calculate new prices according to the relations

Cc 3 _ VvV
>\"t = - S}Q Ct(Xt,Xt,Xt) Xn }_{_n Xn JG = O, * s e b T 5
TR A

c o - Vv )

}\_t = = 'a—__— Ct(xt)xt)xt) n En ;/{n t = O) LA T J
Xt Kpofyoiy

Ao = o — 0, (%, 5%, ,%,) t =0 T

t 3 T R et n En Xn ’ 2 ’
%t Kprfpr 2y

oc O , i=0, «o. , I

xjt T 7 ox. Ot(§t’2 ) n.n t =0, oo , T

}\oh__é 0. (x, ,h.) 1i=0, «v. , I

it = T Oh., 32t/ | noon £=0, coa , T
it Eeoly
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where

bl
B
1
1) ==
i_lM
el
—
d_
-
@
\:/3
-

3 dJ dJ
J
vn n
X, = yoeL(t,67) ,
J=1
n J n
v
2 = L _Ci.(t,@ )
L s
and
n g n
h, = ) K. (t,65) , t=0, ... , T.
j=1 79 Y
(Note: Ct( ) and Ot( ) must be concave+ and differentiable.)

4. TIf the new prices equal the prices determined on the previous
iteration, then the conditions of Theorem IT are satisfied
and Qn is equal to Q%, the optimal installation policy.
Otherwise return to Step 2 using the new prices computed
in Step 3.
The mathematical aspects of this algorithm, including the concavity
and differentiability redquirements are discussed later in this subsection.

A relaxation coefficient can be used in Step 3 of the algorithm.

Organizational Interpretation

In this subsection the successive approximations algorithm for
decomposition of the planning example is interpreted in terms of a

decentralized organization. The discussion is & more precise version

+ In other words —Ct( ) and -Ot( ) must be convex and differentiable.

11k



of the introductory discussion of the electrical power system planning
example in Section 1.3.

The successive approximations decomposition algorithm can be viewed
as guldelines for the operation of a decentralized organization designed
to plan the power system.

Fach maximization in Step 2 of the algorithm can be performed by
a separate plant manager. According to Step 2 the plant managers should
maximize "profit." The plant manager's profit is composed of two types
of cash flows. One type of cash flow results from the fixed operating
costs, installation cost and terminal value of a plant. The second

type of cash flow is based on the following prices and resources:

Price Resource Definition of Resource
xi Xt reliability capacity in each period
xi E% reliability average capacity in each
period
¢ y
kt Xt reliability variance of capacity in

each period

o]
(el

A X operating capacity of each type in
it it ;
each period
kgz Kit hourly operating cost of each type

in each period (hydro energy in each
period for i = 0).
Step 2 of the algorithm directs a plant manager to choose the instal-
lation policy for his plant that maximizes the present value of profit
at the given discount rates. Generally the installation decision
concerns the size of the plant, but other decisions may be treated.

In many cases the profit maximizing decision is not to install a plant.
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The important feature of the plant manager's task is that given a set
of prices the plant manager's decisions are independent of the decisions
of other managers.

The prices on the resources are set in Step 3 of the algorithm.
We can view these prices as the responsibility of the system managers.
Through the prices on the resources, the system managers control the
allocation of the resources. It is appropriate that the system managers
set the prices because they have access to the technical knowledge that
is required.

Two types of system managers can be defined for this problem.
A reliability manager and an operating manager can be viewed as setting
prices on the resources produced by the plant managers in each period.
The appropriate price on the resource is the marginal value of the
resources in reducing the costs of satisfying the demand. The system
managers do not require detailed knowledge of the plant managers
decisions. The prices can be computed on the basis of the total pro-
duction of resources by the plant managers. There is no point in
defining a system manager for each resource because of the detailed

technical information that would need to be communicated among them.

Computational Advantages

The computational effectiveness of the decomposition method in
this example is potentially enormous. For example, consider the number
of policies that would require evaluation if an unsophisticated direct
search were attempted. If the planning horizon requires 20 periods

and 10 alternative installations of plants are possible in each year
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then 1020 evaluations must be performed. Clearly a direct approach
is not economic.

In contrast, each iteration of the successive approximations
algorithm requires the equivalent of about one evaluation of a policy.
Thus, many lterations can be performed without approaching the high
cost of a direct search. Empirical results with other problems indicate

the number of iterations required is usually much less than ten [6 ].

TImplementation of the Method

Implementation is discussed in detail in Section 3.5; however,
a few comments on implementation are appropriate at this point.

There are two distinct approaches to implementing the decomposition.
The first approach is to define actual functions and numerical data
for the model formulated in Section 3.5. The prices in Step 3 of the
algorithm can be determined from the effect of perturbations of the
varameters of the reliability and operating models. The required
concavity assumptions in the successive approximations algorithm can
be checked by & sensitivity analysis.

The other approach to implementation of the decomposition requires
a detailed model such as the computer simulation model developed for
the original analysis. If the detailed model is structured along the
lines of the independent‘submodels developed in Section 3.3, then the
resources and prices defined in this section can be used to decompose
the detailed model. The resulting decomposition is approximate but
the model used may be more realistic.

Tinally, & combination of the two approaches can be used. For

example, the analyst might determine a policy by the first approach
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and then tune the policy on the detailed model. This approach requires
fewer evaluations of the detailed model than the second approach.

The advantage of using the detailed model is that interactions
that are not important enough to treat explicitly through a pricing
scheme can at least be treated approximately. The disadvantage is
that if these interactions are significant then the resulting policy
will be approximate and the required computations will be complicated

by the "noise'" or random effects of these other interactions.

Price Directive Gradient Algorithm

Algorithms can be modified very easily in a well-designed computer
program. Thus, the analyst might initially use his intuition and the
successive approximations algorithm. If necessary, he would try more
sophisticated algorithms.

The price directive gradient algorithm for the planning example

is described below.

PRICE DIRECTIVE GRADIENT ALGORITHM:
-V
e e . c c c oc oh
1l. Guess initial prices, kt’ kt’ ht’ hjt’ kit'

2. Maximirze
I

- vV
c C— cVv
+ n,c.(t,0.) + Aje.(65,0.) +a c.(t,0.

T
= oc oh
2 K
L [hjtcij(t,ej) Nt ij(t,Qj)]
i=0
+ 7T+lvj(T+1,9j)
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3.

a)

b)

over all Gj € c)j. Rep
results 9?.

Maximize

— Vv

c C—
“NEL - NX - A

cvVv
£ T My T ME

eat for j =1, ... , J. Call the

-V
o Cp(poxpa®)

= Vv n -—n Vn
over all Xis Xpy Kpo Call the results Xy Xy X, o Repeat
for t=0, ... , T.
Maximize
%% oc ohh
-}y XL, PN -
L Dvgprgy + by - 0 (xsh)
i=0
over all Xt and hit’ i=0,1, ... , I. Call the
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then the conditions of Theorem IT are satisfied and 9?,

=1, ... , J is the o

new prices according to

ptimal policy. Otherwise, compute
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and return to Step 2 (the prices on the left are the new
prices).

Each iteration of the price directive gradient algorithm is more
difficult than each iteration of the successive approximations algorithm.
Step 5 of the price directive algorithm requires the solution of two
multi-variable optimization problems to determine the new prices.
Generally, the solution of these multi-variable problems requires more
evaluations of the reliability and operating models than determination
of the prices by perturbations about the current allocations of resources.

If the operating and reliability models have further special
structure then the multi-variable optimizations reguired by the price
directive algorithm can be simplified. Conceptually it 1s possible
to decompose these multi-variable optimization problems although it
is not clear that any computational advantages would result in this

case.
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Bounds

Upper and lower bounds on the optimal present value of profit are
useful in the practical application of the algorithms. A set of bounds
can be written directly using the results of Section 2.2.

The bounds described below are valid for the price directive
gradient algorithm in all cases, and for the succesgive approximations

algorithm when the relaxation coefficient is set to unity.

BOUIDS :
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The terms involving ©' are determined in 3tep 2 of the algorithms.
The terms such as X% are determined in Step 3 of the price directive
algorithm or in Step 2 of the previous iteration in the successive

approximations algorithm. An upper bound is not available on the first

iteration of the successive approximations algorithm.

Gaps

It is difficult to predict whether the optimal solution to the
planning example lies in a gap. Generally, a numerical example must
be formulated and solved to resolve this question.

From a practical point of view, the best approach in complex
strategic problems is to ignore gaps unless they cause difficulty.

The upper and lower bounds on the optimal present value of profit

can be used to determine the importance of a gap. If a gap is signifi-
cant then the computationally less degirable penalty function methods
can be used. An alternative approach for treating gaps in the planning
example is developed in the next subsection.

Intuitively, gaps are most likely to involve the project managers'
decisions. If the project managers' decisions oscillate between extreme
alternatives for changes in the resource prices, then the danger exists
that an intermediate decision is optimal. If this oscillating behavior
is observed the analyst should investigate the cause of the oscillations.
The investigation may reveal whether and where penalty function methods

should be applied.

A Sequential Decomposition of the Example

The degree of decomposition implied by the algorithms discussed
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thus far is fairly complete. F¥ach plant can be viewed as a separate
entity with the only coordination between plants occurring through
the iterative adjustment of the prices. Nevertheless, from an overall
computational point of view it may be more effective to permit some
direct coordination between certain plants. The sequential decompo-
sition method developed in this subsection permits coordination between
plants installed in the same year. The speed of convergence i1s improved
and the effect of gaps tends to be reduced with the sequential decompo-
sition at the price of less decomposition.

To formally describe the sequential decomposition we must redefine

our decision variable notation. ILet

GT = a 1list of plants installed in period T.
6 = an installation policy where

9: (GO) ° s e 3 GT) °
® = set of installation policies.

Thus, where we previously defined Gj as a single plant, the
term 91 now refers to a list of plants.
With this new notation our decision problem is to select & policy

0 ¢@ , to maximize

T T
> v AR, - Y £ (£,0) + vy (t,6)]
=0 Tt =0 T T T T
T T T y
S - = o
- Ct([, CT(t,QT), )9 CT(t’eT)’ s CT(t,QT))
T=0 T=0 T=0
T T
- Ot( 2 e (6,6 ), 2, KT(t,QT))
T=0 =0



The sequential decomposition of this problem can be developed
using the general method suggested in Section 2.1. Because of the
notational complexity, we will only outline the development.

Differentiation of the objective function above with respect
to 91 produces T + 1 simultaneous equations. Fach equation will

include terms of the form

o - V ) o 5
3 Gl | x oy For (B0
Xt’Xt’Xt t T
Wwhere
t
* *
X't = Tz:o C’L'(t’e’f)
t
—% = - *
=0
and.
t
V¥ o \ *
X_t = T'j:b CT(t’QT) .

We can solve the simultaneous equations iteratively if we (1) esti-
mate certain terms, (2) solve for the optimal decisions Q% and (3)
calculate the values of the terms we estimated. TIf we guess terms of
the form,

o - v
SR A
for t =0, «.. , T, then we will develop the same successive approxi-
mations algorithm ags before. However, if we guess only those terms
multiplied by terms such as

3
55; CT<t’9T)
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where t # 7, and do not guess similar terms where € = T then a
different form of decomposition results. In solving the necessary
conditions for Q we must solve the equations sequentially in the
order 0, 1, ... , T; the solution of the first © - 1 equations
together with the terms estimated, provide enough information to solve
the tth equation independently of the remaining equations.

The sequential solution of the equations describing the necessary
conditions can be interpreted in terms of the theory developed in
Chapter II for non-differentiable functions. A formal algorithm for
sequentially determining the optimal policy is provided by the following

modification of the successive approximations algorithm.

SEQUENTTIAL SUCCESSIVE APPROXIMATIONS ALGORITHM:
1. Estimate initial prices as in Step 1 of the successive approxi-
mations algorithm, or start with a trial policy at Step 3.

2. Maximize

T
fq,- 7t|:—f‘1'(t’e’f) - YT(t)eT)]

%
T T
0 (D e(t0y), T K (6.0))
t=0 t=0
T T _ T v
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T\ZH BT S U T oy Tt
T — v
— C C‘—‘ CV
) +
+ Yy xtct(t,eT) + xtct(t,eT) xtct(t,eT)
't:"l,"l‘l
+ 5 2. (t,6.) + 28k, (t,6.)]
Rt Mg\t it it oY
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over all GT €0, for 7 =0. Repeat for T7=1, ... , T

in ascending order of the index 7. C(Call the results o".

3. Calculate new prices as in Step 3 of the successive approxi-

mations algorithm.

4. Terminate the algorithm or return to Step 2 as in the successive

approximations algorithm.

The algorithm can be Justified on the bagis of a theorem similar
to Theorem II. Upper and lower bounds are easily developed. A sequential
price directive algorithm can also be formulated.

The interpretation of the sequential decomposition in terms of
a decentralized organization provides some insights. Step 2 of the
algorithm suggests that the operation of the power system in each
period can be viewed as the operation of separate enterprises. The
manager of each enterprise has two tasks. His first task is to decide
on the amount and composition of new capacity to install in his system.
He receives payment for the system at the end of his period on the
basis of the amount and prices of resources incorporated in the system
at that time. His second task is tovset the prices on the resources
he receives from the previous managers at the start of his period.

The decentralized interpretation of the algorithm emphasizes that
the installation decisions made in a given year are coordinated directly
with the operating and reliability models for that same year rather
than indirectly through prices. Prices are still used to coordinate
the installation of plants in a particular year with the operating
models, reliability models, and installation decisions in other years.

There are two computational advantages to the sequential algorithm.
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First, convergence will tend to be faster because all of the required
coordination does not rest on the iterative determination of the prices.
Secondly, the sequential algorithm tends to reduce the effect of gaps.
Gaps can arise because of economies of scale in purchasing new capacity.
The sequential algorithm partially balances these economies of scale

with the diseconomies of scale in operating the system. These compu-
tational advantages are obtained at a slight increase in the computational
difficulty of Step 2 of the algorithm. In problems under uncertainty,

sequential decomposition involves other restrictions.

3.5 Numerical Solution of the Planning Example

In this section we discuss the solution of a specific numerical
example of our electrical power system planning problem. This example
incorporates most of the significant features one would wish to treat
in the analysis of capacity expansion decisions.

The example required the development of a series of computer
routines. The resulting computer program illustrates how problems
of this type can be organized for solution on a computer.

The data for this example is from the original analysis of the
Mexican system [10]. A summary of the data is included in this section.
The summary of the data indicates the amount of detail and realism that
can be incorporated in an analysis of this type.

The results of this numerical example demonstrate that the decompo-
sition methods developed in this dissertation provide a practical tool
for the analysis of complex decision problems. The example is carried

to the point where the convergence and general character of the results
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are established. Further exercising and analysis would be justified

for an actual decision problem.

The Computer Program and Data Assumptions

The structure of the computer program is described by the simple
flowchart in Figure 5.10. The program is designed to use both the
standard and the sequential versions of the succegsive approximations
algorithm. After some initialization calculations are performed an
initial installation policy is provided to the program. This initial
policy determines a flow of resources. The initial set of prices is
calculated by the price routine at the resource levels determined by
the initial policy. The decision routine then scans a list of possible
installations for each period in the analysis. Based on the current
prices of the resources, the best installation decisions are made.
Tinally, the current results are displayed and the program returns to
the price routine to start another iteration. The use of a time-shared
computer system permits the analyst to interact with the program to
change parameters and terminate the run at any point.

The price routine performs the operations necessary to calculate
the first derivative of the variable operating cost and reliability
cost functions with respect to the resources. The differentiation
is performed numerically by making small perturbations of the resources
about a given level. The price routine calls on a reliability routine
and a variable operating cost routine in calculating the prices.

The reliability routine is programmed to perform the calculations

described in the formulation of the problem in Section 3.2. All of the
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Figure 3.10: SIMPLIFIED COMPUTER FLOWCHART
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required integrations are performed numerically. The reliability model
requires the specification of a functional form for the probability
distribution on available capacity. The results for both the Weibull
and Gamma families were essentially equivalent and close to the results
of the original analysis in terms of expected energy loss per year.

A price of 80 U.S8. cents per kWh of energy loss was used to convert
expected energy loss to an economic measure of reliability.+
The variable operating cost model is also programmed to perform
the calculations described in Section 3.3. In this example the instal-
lation of new hydro capacity is not considered because very few economic

hydro sites remain undeveloped in Mexico. Thus, the hydro energy may
be allocated independently of changes in the expansion policy. The
program performs the allocation of hydro energy in the initialization
routine of the program. Stochastic variations in hydro energy are
not treated in this example, but could easily be introduced in a full-
scale example. A deficit charge of 20 mills per kWh is assigned to
energy deficits that occur when the energy requirements exceed the
available energy from all plants in the system.

The reliability and operating models operate on an annual basis.
The scheduling of maintenance and the seasonal variations in demand
are not treated in this example. A first order correction for the
effect of maintenance is incorporated by multiplying the available capacity

of each plant by the fraction of total operating time required by

+All data in this analysis was converted to U.S8. dollars at the official
exchange rate of 12.5 pesos per dollar. The data is expressed in 1969
dollars.
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routine maintenance. TIn the operating models the avallable capacity
replaces the nameplate capacity in order to account for the effects
of outages on variable operating cost.

The operating and reliability models require a load duration
curve. The program stores the load duration curve in the form of
a table. The load duration curve is computed from histerical demand
data on the Mexican system. The load factor is 0.605. The load duration
curve is rescaled to account for growth in demand. The energy require-
ments for each year are provided as data. The growth rate is not constant
but averages about 8.5 per cent per year. To reduce the number of inte-
grations required in the operating and reliability model the integrated
load curve is calculated in the initialization routine. Short-term
uncertainty in demand was not incorporated in the load duration curve
for this numerical example.

The decision routine generates a new policy on the basis of the
current prices on the resources. The routine is designed to operate
on either the standard or sequential successive approximations algoxrithm.
At this level, the only significant difference between the two versions
of the algorithm is that the sequential algorithm calls on the operating
and reliability models to evaluate plants. The calculations performed
by the decision routine are described in Step 2 of the algorithms.
Some economies in the calculations are possible when the resources
describing the plants do not vary over specified intervals of time.

In this example a plant is uniquely identified by its type,
nameplate capacity, and date of installation. Plants are installed

from a catalog. The catalog specifies the combinations of plants
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that can be installed in each year. The catalog 1s necessary only for
the sequential algorithm, although, it can be used for the nonsequential
algorithm. Table 3.1 summarizes the catalog used in the numerical
example. The catalog can easily be modified to add new combinations

of plants. In each period the decision routine chooses the "best"

plant in the catalog.

The installation cost and fixed operating costs of the plants
are summarized in Table 3.2. The installation cost is expressed as
a discounted cash flow. The effects of financing, inflation and interest
during construction are included in the discounted cash flow. Both
the installation cost and the fixed operating cost for nuclear and thermal,
display some economies of scale (decreasing average cost per MW as a
function of size). The larger gas turbines are composed of a number
of smaller units. Thus, the costs of gas turbines are approximately
linear as a function of size. The trend in the installation costs is
a decrease of 1 per cent per year for nuclear and gas turbine plants
and a decrease of 0.6 per cent per year for thermal plants.

The resources or parameters describing the plants are calculated
from the data in Table 3.3 according to the models described in Section
5.2, The failure probability of nuclear and thermal plants increases
with size. During the break-in period of two years, the failure proba-
bility of nuclear and thermal plants is twice the normal value. In
calculating the resources, the approximations for maintenance and the
effect of reliability on operating cost are included. The trend in
the fuel prices is a decrease of 1.7 per cent per year for nuclear and

a decrease of 2.5 per cent per year for thermal and gas turbines.
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Table 3.1

CATALOG OF INSTALLATION ALTERNATIVES FOR FACH YEAR
Plant Capacity (MW)

Catalog No. Nuclear Thermal Gas Turbine
1 - - -
2 500 - -
3 750 - -
L 1000 - -
5 - 300 -
6 - 500 -
T - 750 -
8 - 1000 -
9 - - 150

10 - - 300
11 - - 500
12 1000 - 150
13 1000 - 300
14 1000 - ‘500
15 - 500 150
16 - 1000 150
17 - 1000 300
18 500 - 150
19 500 - 300
20 500 500 -
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Table 3.2

PLANT COST DATA

Present Value of Annual Fixed

Size Type TInstallation Cost Operating Cost
MW Millions Millions Per Year
500 Nuclear 95.4 1.64

750 Ifuclear 129.0 1.8h

1000 Muclear 162.6 2.04

300 Thermal 28.1 0.75

500 Thermal 38.4 0.96

750 Thermal 55.1 1.20
1000 Therma 1l 76.0 1.44

150 Gas Turbine 10.1 0.2k4

300 Gas Turbine 20.2 0.48

500 Gas Turbine 33.8 0.72
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Table 3.3

PARAMETERS OF PLANT MODELS

Plant Failure Maintenance Variable
Qize Type Probability Time Operating Cost
M Per Cent Months/Year mills/kwh
500 Nuclear h.o 1.0 1.35
750 Nuclear 4.8 1.0 1.30
1000 Nuclear 5.3 1.0 1.26
300 Conv. Thermal 3.0 0.5 3.13
500 Conv. Thermal L.o 0.5 3.11
750 Conv. Thermal 4.8 0.5 3.08
1000 Conv. Thermal 5.3 0.5 2.95
150 Gas Turbine 1.0 0 4.95
300 Gas Turbine 1.0 0 L.95
300 gas Turbine 1.0 0 Lh.o5

+ The variable operating cost is for 1969. The fossil fuel price

33 cents per million Btu. The nominal trend in fuel prices is -1.

per cent per year for nuclear fuel and -2.5 per cent per year for
fossil fuel (conv. thermal and gas turbine).
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The terminal values of the plants are assigned on the basis of
their ages at the horizon and the installation cost of the plant. The
terminal value model can be visualized in terms of selling the assests
of the system to a hypothetical buyer at the horizon. In determining
the terminal value, nuclear and thermal plants are assumed to last
for 60 years and gas turbines for 40 years. The value of the plant
is assumed to decrease linearly with age. For example, if a nuclear
plant is 15 years old at the horizon, then 45/60th of the installation
cost is assigned as the terminal value. The accuracy of this terminal
value model can be tested by extending the horizon year.

The discount rate reflects the time preference of the decision
makers. In this example the discount rate is 6.5 per cent per year.

In assigning the prices and trends in prices the general inflation

rate is factored out. 1In computing the effect of financing an inflation
rate of 2.5 per cent per year is assumed. In actual (inflated) currency
the equivalent discount rate is approximately 9 per cent.

The example assumes a six year lead time between the time a decision
is made and the first operation of the plant. Assuming the first decision
is made in 1969 then the first year of operation of this plant is l975.+
The model is capable of simulating the operation and expansion of the
system through the year 2000, or longer, if necessary, although the
numerical examples were run through the year 1985.

The initial system in 1974 provides the starting point for our

+ Actually, the required lead time is considerably shorter for some
plants, particularly gas turbines. TIn a deterministic model the length
of the lead time has no effect because thereis no uncertainty to be
resolved in this period.
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analysis. The initial system is described by the total resources
implied by the plants installed in the system in 1974. Table 3.k
summarizes the basic data from which the initial resources were calcu-
lated.

The hydro system is not affected by the decisions congidered in
this example. The initial peak hydro capacity is 4056 MW. The energy
available from these units is 15 X 106 MWh per year.

The example was programmed on the General Electric Mark II Time-
sharing Service. The budget for computer time amounted to $1500.00

}

including the example in Chapter V. In a full-scale analysis a rea-
sonable computer budget would be at least an order of magnitude larger.
Furthermore, several man-years of effort expended in careful gathering

of data and constructing models would be reasonable in view of the

magnitude of the economic resources 1nvolved in power system planning.

Results of the Mumerical Example

The results of the numerical example are presented in Table 3.5.
The initial policy is based on the results of the original analysis.
The optimal policy was achieved in three iterations. Two additional
iterations were made to demonstrate that the algorithm had converged.

The present value of the initial policy is 1192.4 million dollars
versus 119%.2 million dollars for the optimal policy. Actually, only
differences in the present value are significant in this example. The

improvement 1n present value between the initial and optimal policies

+ Each iteration of the example costs approximately $5.00. Thus, 1f
convergence is achieved in 6 iterations, then the cost of a complete
run is approximately $30.00. The major expense 1s in programming and
debugging the computer program. ’
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Table 3.k

THE MEXTICAN SYSTEM IN’l97h+

Variable Maintenance

Number Failure Operating Months
of Size Probability Cost Per

Plants MW Type Per Cent mills/kwh Year
1 27 Conv. Thermal 1.5 L.72 0.5
3 39 Conv. Thermal 1.5 3.6 0.5
2 Lo Conv. Thermal 1.5 h,12 0.5
1 10 Conv. Thermal 1.5 4. 72 0.5
1 5 Conv. Thermal 1.5 h.72 0.5
6 150 Conv. Thermal 3.0 3.36 0.5
2 33 Conv. Thermal 1.5 3.66 0.5
2 80 Conv. Thermal 1.5 3.66 0.5
1 300 Conv. Thermal 3.0 3.13 0.5
6 2l Gas Turbine 1.0 5.28 -
L1 30 Hydro 1.0 - -
L 52 Hydro 1.0 - -
10 180 Hydro 1.0 - -
b 75 Hydro 1.0 - -
B, 156 Hydro 1.0 - -

T

Total capacity is 5755 MW in 1974.
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Presernt Value

Tteration:
Year

Installed
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

1985

in Millions

Table 3.5

RESULTS OF THE NUMERICAL EXAMPLE

i

Installations from Catalog

Initial

Policy 1st 2nd 3rd
6 1 1 1
2 6 9 10
6 11 15 15
18 15 15 15
10 15 15 15
13 1k 15 15
11 1k 15 11
11 1k 15 15
13 1L 1k 1k
11 1 11 15
15 1 1h 1l

1192.4 1191.3 1190.8 1194.2

T

See Table 3.1 for definition of catalog.

hth
1
10
15
15
15
15
11
15
1h
15
14

119k .2

5th
1
10
15
15
15
15
11
15
1
15

1k

1194.2



is 1.8 millioﬁ dollars. This difference is extremely small compared
to the magnitude of the investments involved in power system planning
(2 1000 MW nuclear plant costs approximately 180 million dollars with
the initial fuel load).

The relatively small differences in present value among the policies
generated by the algorithm occurs for three reasons. First, the initial
policy was assigned on the basis of insight developed during the original
analysis. In another power system, the insight of the analyst might
not be as well developed. As an illustration, Table 3.6 presents the
results of the algorithm starting from a less desirable policy. The
algorithm does not converge as quickly as before. Nevertheless, the
optimal policy is achieved.

A second reason for the relative insensitivity of the present
value to the policy is important from a practical point of view. The
unconstrained formulation+ of the model balances considerations of
capital cost, operating costs, reliability, timing of installations,
etc., on an economic basis. In a broad region surrounding the optimal
policy these considerations tend to balance out. Thus, for example,
the improvement in operating costs and reliability charges resulting
from early installation of a plant is approximately balanced by the
effect of discounting on the earlier payment of capital costs. The
practical value of the insensitivity to the policy is that other con-

siderations not explicitly treated by the model often can be incorporated

into the policy without affecting the present value index.

* A constraint on the amount of reserve capacity or on the probability
of load loss, for example, would eliminate trade-offs between reliability
and other costs.
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Table 3.6

SENSITIVITY OF RESULIS TO INITTAL POLICY

L

Installations from Catalog

Iteration:
Year Initial

Installed Policy 1st 2nd 3rd Lth 5th 6th Tth 8th
1975 5 20 1 1 11 1 1 1 1
1976 2 20 6 9 6 9 10 10 10
1977 6 20 11 15 11 15 15 15 15
1978 2 20 15 15 15 15 15 15 15
1979 10 20 7 15 15 15 15 15 15
1980 3 20 7 15 15 15 15 15 15
1981 11 14 17 15 11 14 11 11 11
1982 11 14 17 15 6 11 15 15 15
1983 13 17 14 1L 15 11 14 14 14
1984 11 11 1 11 7 7 15 15 15
1985 1% 1 11 14 14 14 1L 14 14

Present Value

i Millions 1181.2 1116.2 1188.5 1190.82 1186.6  1193.4  1194.,2  1194.2  1194.2

+ See Table 3.1 for definition of catalog.



The third reason for the relative insensitivity to the policy
also has practical importance. In a rapidly growing electrical system
such as the Mexican system, major new installations are required at
frequent intervals. The new installations provide opportunities to
change the character of the system and to compensate for any undesirable
effects of past decisions. The opportunity to dynamically plan the
system 1s particularly important under uncertainty. The net effect
is that uncertainty is not very important in a rapidly growing system.
In Chapter V we consider power system planning under uncertainty in
detail.

Some features of the optimal policy are summarized in Table 3.7.
One significant feature of the policy is the relatively low reserve
capacity in certain pericds. 1In the original analysis capacity reserves
on the order of 15 per cent of peak demand were found necessary. The
load duration curves used in this example do not incorporate the adjust-
ment for short-term uncertainty in demand that was suggested in the
formulation of the reliability model. Since the original analysis
incorporated short-term uncertainty, the difference in reserves between
the two analyses is apparently the required correction for short-term
uncertainty in demand. The results of the example still provide a
valid demonstration of the decomposition approach. However, the model
and the data must be tuned-up before the results can have policy impli-
cations for the Mexican system.

Another characteristic of the optimal policy is that nuclear plants
are not installed until 1983. TIn the original analysis, the differences

between nuclear and thermal expansion plans in the 1975-1980 period
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Table 3.7

FEATURES OF THE OPTIMAL POLICY

Peak Installed  Reserve Hydro Muclear Thermal Gas Turbine

Demand  Capacity Capacity  Capacity  Capacity  Capacity Capacity
Year MW MW Per Cent MW MW MW MW
1975 5,297 557125 9 L056 1615 8l
1976 5,761 6,055 5 4056 1615 58k
1977 6,253 6,705 7.5 4056 2115 53k
1978 6,758 7,355 9 4056 2615 68k
1979 1,325 8,005 9 L4056 3115 83k
1980 7,936 6,655 9 L056 3615 98l
1981 8,600 9,155 6.5 4056 3615 1484
1982 9,311 9,805 5 4056 4115 1634
1983 10,084 11,305 12 4056 1000 4115 2134
1984 10,920 11,955 9.5 Lo56 1000 L4615 228k

1985 11,826 13,455 1%.5 L 056 2000 4615 278k



were small. The fact that no nuclear plants were installed in the
optimal policy in this example may be attributed to small differences

in the models, such as the neglect of uncertainty in hydro energy.
Nevertheless, the effect is small as is evidenced by the small difference
between the present value of the initial policy in Table 3.5 that
installs nuclear capacity in 1976 and the present value of the optimal
policy that installs no nuclear capacity until 1983.

It is interesting to demonstrate the algorithm in a situation
that is favorable to nuclear power. Table 3.8 presents the results
of an example where the trend in nuclear fuel price is a decrease of
10 per cent per year (from 1969) rather than the nominal decrease of
1.7 per cent per year used in the previous examples. Although this
example is extreme, the results are intuitive. The best strategy is
to install nuclear capacity as quickly as possible in order to achieve
the operating cost savings.

We can obtain further insight by examining the prices on the
resources produced by a policy. Table 3.9 contains the prices assigned
to each resource produced by the optimal policy in Table 3.5. It
is sometimes difficult to interpret the prices because each price is
determined by the interaction of almost 100 resources! Furthermore,
the magnitude of the resources depend on the units used to describe
the resources. Nevertheless, the pattern of prices over time provides
some insight.

The first three resources referred to in Table 3.9 concern the
reliability of the system. The most important of these is the capacity

3

resource. The price on capacity hovers around 7.0 X 1077 except in
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Tteration:
Year
Installed

1975
1976
1977
1978
1979
1980
1981
1982
1983
198k
1985

Present Value
in Millions

Table 3.8

SENSITIVITY TO NUCLEAR FUEL FRICE TREND

}

Ingstallations from Catalog

Initial
Policy 1st 2nd 3rd Lth 5th
6 14 1 1 4 N
2 14 10 9 4 4
6 1k 15 3 1 1
18 1k 15 12 3 3
10 1 1h L 9 9
13 b 1h 3 3 3
18 1h 1h 11 11 11
10 1L 1k L 13 13
13 1h 1h 19 11 11
11 11 1 19 13 1k
13 L 3 3 3 3

1223.9 1130.%  124k.9 1283.6 1306.3  13%06.5

+ See Table 3.

1 for definition of catalog.

6th

W O W

11

15
11

1L
3

1306.5

Tth

W O W

11

15
11

1k
3

1%306.5
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Resource:
Year

1975
1976
1977
1978
1979
1980
1981
1982
1983
1084
1985

Reliability
Capacity

x1077
2.08
7.88
7.21
7.34
6.74
7.1k
9.28
13.83
7.27

11.25

5.9

Table 3.9

PRICES ON THE RESOURCES COF THE OPTIMAL POLICY

Variance
Average of

Capacity Capacity Capacity
X107 X107
2.71 -6.70
-56.02 -12.13
3.58 -10.39
L.Lo -9.23
ﬂ.lo ~7.83
3.33 -7.57
-25.05 -8.87
-5.53 -10.01
5.17 -5.30
1.45 -6.51
L.37 -3.59

x10

2

22.

2

Nuclear

-2

59

19

.52
.51
.60
.89
.30
LT
.20
.19
.08

Nuclear

Operating Thermal

Cost
X107
-7.87
-137.18
-8.23
-8.76
~9.71
-12.30
-26.88
-L7.86
-7.29
-7.39
6.9k

Capacity

x10

-2

2.L6

L

2.

2.
1.
1.

1.

NG

L2

.22
.09
.01
.26

21
o
9>
>

Thermal Gas
Operating Turbine
Cost Capacity
x10% x107°
-7.16 0.0
-7.34 1.61
-7.13 0.006
-6.58 0.008
-6.20 0.013
-5.98 0.023
-6.41 0.091
-6.24 0.113
-5.49 0.070
-5.53 0.098
4.93 0.075

Gas
Turbine
Operating

Cost

x10"
0.0
-3.21
-118.88
-174.81
-26L4 .05
467,75
-18.39
-22.68
-1k.11
-19.86

-15.31



the years 1975, 1982, and 1984. 1In 1975 the price is relatively low
indicating an excess of capacity. In 1982 and 1984 the price is rela-
tively high indicating a slight shortage of capacity.

The prices on average capacity and variance of capacity are more
difficult to intuit. Generally, the variance of capacity is an unde-
sirable resource and has a negative price. Average capacity is usually
a desirable resource with a positive price. 1In 1976, 1981, and 1982,
the years with the smallest reserve capacity, the average capacity has
a negative price. On the surface this appears strange. However, the
reliability resources interact in a very complicated manner which is
difficult to describe in a simple way.

The remaining six prices are assigned to the operating resources:
two for each type of plant. The prices assigned to operating capacity
are positive while the prices assigned to total hourly operating cost
are negative. The price assigned to gas turbine capacity is relatively
small, since gas turbines are primarily installed for reliability.

Ihe Prices or nuclear capacity generally increase over time until
nuclear capaciéy is actually installed in 1983.

A relaxation coefficient of 0.5 was used in all of the examples.
Unfortunately, the budget for computer time did not permit a detailed
investigation of the effects of changing the relaxation coefficient.
The algorithm did not appear to converge when the relaxation coefficient
was set to unity.

Once the algorithm had converged on a policy the relaxation coeffi-
cient was set to 1.0 for the final iteration. The conditions of the

optimality theorem (Theorem IT) are not formally satisfied unless the
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prices on successive iterations are identical. The use of a relaxation
coefficient prevented the easy calculation of upper bounds on the
present value.

The results of this example are optimal only if the operating
and reliability models are concave. This assumption was not verified
gquantitatively. Intuitively there is no reason to suspect the condition
is not satisfied, at least in the region of the optimal policy. In
a full-scale analysis the price directive gradient algorithm could be
implemented to check this assumption. The price directive algorithm
does require concavity of the operating and reliability models. An
advantage of the price directive algorithm is that upper bounds could
be easily computed for this example. A disadvantage is that the price

directive algorithm is more expensive to implement and operate.

3.6 Conclusions Based on the Model

The results of this numerical example of electrical power system
planning clearly demonstrate the practical value of the methodology
developed in this dissertation. Naturally, the decision to apply the
methodology to another power system problem should receive careful
consideration. On the negative side, the analyst is not, apriori,
guaranteed that the methodology will solve his problem. Gaps and
convergence difficulties may present overwhelming problems in some
power system problems.

On the positive side, the methodology requires no restrictive
assumptions of the model. If the methodology is used and a solution
cannot be obtained because of gaps or convergence difficulties, then

the model of the system is still useful. Heuristic or other optimization
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techniques could be applied at this point. When gaps and convergence
are not problems, then the methodology is far more powerful than any

other approach.

3.7 DPossible Extensions of the Model

We have already mentioned several areas where assumptions in the
electrical power system model can be relaxed without affecting the
method of solution or the structure of the model. In this subsection
we discuss alternative ways of formulating electrical power system
problems. A full-scale application of the methods of this dissertation
to a power system planning problem would afford the opportunity to
reconsider the scope of the model.

An interesting and possibly valuable extension of the model is
to relax the assumption of a point system. Relaxation of this assumption
would allow explicit consideration of transmission, system stability,
and area protection effects. 1In terms of the decomposition approach,
the system could be represented as several geographically separate,
but interconnected, systems. The separate systems could be viewed as
buying and selling power to each other. By carefully structuring the
model describing the whole interconnected system, it should be possible
to apply the methods of this dissertation. The result might be a set
of prices that would coordinate the allocation of resources among the
interconnected systems. Without first formulating such a model it is
difficult to sepeculate on the exact form the prices, resources, and
resource markets might take.

Another extension along the same lines 1s the explicit treatment
of plant siting effects. 1In addition to the transmission, system
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stability, and area protection effects, plant siting is important in
terms of local economic and environmental conditions. For example,
a full-scale model might take into account the transportation costs
of fuel, or the availability of cooling water at a particular location.
The social benefits and costs of the ecological effects of power plants
in various locations could be considered. This extension of the model
would be particularly important for power systems in industrially
advanced nations, where the environment is an important consideration.
At a higher level, the methodology can be applied to the planning
of a decentralized, nation-wide power system. In the United States,
the ultimate regpongibility for the operation of power systems rests
with the regulatory agencies. These agencies are sometimes viewed
as delegating certain decisions to private and public power system
managers. The decisions of the power system managers are subject to
guidelines set by the regulatory agencies.
If a model of the nationwide system could be structured (not solved
numerically) then it may be possible to identify methods for decomposing
the model. The decomposition of the model would suggest ways of decen-

tralizing and regulating nation-wide power systems.
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CHAPTER IV

DECOMPOSITION UNDER UNCERTAINTY

The mathematical fundamentals of decomposition under uncertainty
are developed in this chapter. The general outline of this chapter
is similar to Chapter II where the mathematical fundamentals are
developed for deterministic problems. It is significant that the
decomposition of problems under uncertainty requires exactly the same
mathematical tools as the decomposition of deterministic problems.

Problems with separable objective functions are treated in Section
k.1. This class of problems includes problems where the objective is
to maximize the expected present value of profit.

The analysis is extended in Section 4.2 to problems with arbitrary
objective Tunctions. In this class of problems are problems where a
multi-attribute risk preference function (a von Neuman-Morgenstern
utility function) describes the preferences of the decision maker.

In our development of the mathematical foundations of decomposition
we shall classify problems as either open-loop or closed-loop decision
problems. In an open-loop decision problem the decision maker must
irrevocably allocate his resources before the uncertainty is revealed.
In & closed-loop decision problem the decision maker has the opportunity
to adjust the allocation of his resources depending on how the uncertainty
is resolved. In some cases the uncertainty is slowly resolved over time
and the decision maker can respond dynamically to the new information.

The extreme case of perfect information is where all the uncertainty
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is resolved before a decision is made. Another extreme case of closed-
loop decision making is the open-loop case described above where none
of the uncertainty is resolved before a decision is made.

In this chapter, the mathematical foundations of decomposition
are developed for the general closed-loop decision problem which includes
all other classes of decision problems as special cases. TFor some
extreme cases of closed-loop decision making the results are relatively
easy to implement. 1In the most general cases, specialized computational
techniques or approximation methods are useful. Computational methods
for decomposition under uncertainty are discussed in Section 4.3.

In passing we should note that the introduction of uncertainty
greatly increases the computational difficulties associated with opti-
mization. The results of this chapter permit more generality than is
often required in practical problems. TUncertainty should be treated
explicitly only where sensitivity analysis indicates that an important

decision is sensitive to changes in a state variable.

b.,1 Problems under Uncertainty with Separable Objective Functions

In this chapter problems involving both time and uncertainty are
considered.

The treatment of time in this sectién builds on the results of
Section 2.2. These results are applied to the electrical power system
problem involving time in Chapter III. Problems involving time are
treated by considering flows of resources where the flow of a resource
in each discrete period is viewed as a separate resource. Resources
are similarly defined in this chapter in terms of their physical charac-
teristics and the time period.
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The notation used in this chapter is extremely general., Few
problems require the level of generality implied by the notation.
However, the generality of the notation actually reduces the notational
problems because many special cases that do not prevent decomposition

are not explicitly recognized by the notation.

The Example

The example concerns the selection of a policy to maximize the
expected present value of profit associated with a very general resource
allocation problem under uncertainty. The notation is a straightforward

extension of the notation developed in Section 2.2 for problems under

certainty.

Tet

5 = the vector of uncertain state variables whose uncer-
tainty is usually viewed as being resolved at the
end of period t. The components of s, do not
need to be defined at this point.

El = the matrix of uncertain state variables where

E:(Eo’ ,_S_T)

th(i) = the decision variable asgociated with the jth project

in period t. For example, th is usuvally

viewed as being set at the start of period +

when the state variables R P have
been resolved and Bis Bpyqs e s B are still

uncertain. However, the notation is intended

to allow th to depend on any subset of the
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uncertain state variables that are resolved
when 6,. 1s set.
tJ
6.(s) = the vector of decision variables (a policy) associ-

ated with the jth project where
g. = (6 . . e . .

o(s) = the matrix of all decision variables (a policy)
where
8(8) = (8,(8)s - » 8,(8)) -
_ th .th .
thk(g(i),g) = amount of the k=~ resource used by the j  project
in period +t as a function of the policy and
the uncertain state variables. This function

is given by a detailed structural model of the

project. For example, thk might be a function
of QO(E), cee Qt(é)’ and 8,5 ++- , 84, DUt
not a function of 9t+l(§)’ cee QT(E> and
84410 B ET' The resource thk is assumed

to flow from the resource market to the jth

project at the end of period t.
§tj(9(§)’§) = the vector of resources used by the jth project

in period t where
§tj(9(§),§) = (thl(é(_s_) 58) s wen thK(ﬁ(g),g))

Etk(g(g)’i) = the vector describing the allocation of the i B

resource in period +t among the J projects

where

Etk(g(i)’§) = (thk(é(g),g), see Xth(Q(E):E)) .
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the 3-dimensional matrix of resource allocations.

ytk(g(g),g) = total amount of the k" resource used in period
t by all J projects. Thus,
J
Vi (8(8)s8) = 7 thk(ﬁ(i):é)
J=1
X¢(§(§)’§) = the vector of the total amounts of resources employed
in period t by all J projects where
v, (8(8)58) =(v,,(0(8)58)5 «-v 5 ytK(Q(g),§)>-
X(Q(E)’E) = the matrix of the total amounts of resources employed
by all projects.
Rt(g(é)’i) = total revenue in period t from all J projects

as a function of the policy 6(s) and the uncertain

state variables s. Generally,

where rtj(g(i),g) is the revenue attributed
.th . . .
to the j rroject in period t.
Ct(z(g(g),g),s) = total cost in year t of all resources purchased

in the resource markets. Generally,

Ct(z(g(é);i);ﬁ) );E)

1]
g}
Q
ct
=3
I
[®
[
\\._/
|w

where Ctk is the cost attributed to the kth
resource in period t.
The example problem is to choose a policy to maximize the expected

present value of profit. Thus, we maximize
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) L 7[R (8(s)58) - ¢ (y(8(s),8),8)] (]| €]
S

Brgr

where

§>‘L

over all 6(s) e O

4 = the discount factor associated with period 1,

t

s] &}

I

joint probability distribution on s assigned on the
basis of the decision maker's prior information
at t = 0. {§_| €} generally describes the environment
of the problem and is assumed to be independent of
6(s),

and O (s) = set of all available policies (explained below).

The concept of a policy embodied in the notation 6(s) e  @(s)
is critical to understanding what follows in this chapter. The decision
variables th(i), comprising the policy, control the allocations
of resources. The notation etj(g) is a convenient way of describing
the dependence of the decision variables on the uncertain state vari-
ables. This dependence arises only in closed-loop policies where
decision variables can be set after the uncertainty in some of the
state variables hag been resolved. The notation th(g) does not

63 depends on every component of s. The set @(s)

defines the uncertain state variables that are resolved at the time

imply that 6

th is set

For example, consider the following three types of policies that

+ The generalized integration symbol J. implies summation when the
probability distribution is discrete. Integration is implied when
the probability distribution is continuous.
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are special cases of closed-loop policies:

1. Delayed resolution policy (open-loop policy)

2. Dynamic resolution policy (adaptive policy)

3. TImmediate resolution policy (perfect information policy).

In a delayed resolution policy, the decision maker sets all of
the decision variables before any of the uncertain state variables
are resolved. In this case, 6 does not depend on any component
of s. Of course, 6 still depends on the joint probability distri-
bution on s, {Elg}, through the optimization. The notation @(s)
defines the available policies in a problem. If the analyst wishes
to consider only delayed resolution policies, then ®(E) is used
to restrict consideration to policies that do not depend on s.

The other extreme case concerns the immediate resolution policy
where all of the decision variables are set after the uncertain state
variables are resolved. In this case, 6 depends on all components
of s. This case 1s equivalent to parametrically solving the deter-

ministic version of the problem as a function of s. The set @(E),
in this case, includes only the policies that depend on all components
of s.

The dynamic resolution policy is the most interesting case. 1In
this case, the decision variables are set on the basis of the decision
maker's state of information at the time he makes a commitment. The
decision maker's state of information depends on the structure of the

information flows in the problem. The set @(E) specifies the structure

of these information flows by defining the state variables that are
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resolved at the time a decision is made. TFor example, @(s) is simply

+

a concise way of stating that

etj(i) = etJ(EO} v E.t_l)
In this example, th depends on the conditional distribution,
{E-t’ cer E'I“EO’ e —S-t-l’g} 5

#

through the optimization.

Mathematical Results (Theorem IV, Bounds, and Algorithms)

The following theorem provides sufficient conditions for the
optimality of a solution to the example formulated in the previous

subsection. The theorem is analogous to Theorems T and IT in Chapter 2.

%
THEOREM IV: If 6 (s) maximizes

T £
ﬂéé[yt R @) - L D xtkT(_S_)ka(Q(i),E)ﬂ{g|6}

X
over all 6(s) ¢ @(s), and if y maximizes

T I-X
f[ DEA "‘[ 2 Mg (807 (8) - Ct(X(E):E)ﬂ{§|€}

5 Lt=0 ~ =0

+ The subscripts on 6, and s are useful for describing the problem
structure. However, only @(ST defines the structure of the information
flows. In the dynamic resolution case, ®(s) often defines the same
information flow structure as is implied by the subscripts on Qt and Sg-

# The value of the notation developed in this chapter becomes evident
when we try to write a dynamic resolution problem using more conventional
notation, i.e.,

max f [max f[max f[V(_,g){_s_glil,ﬁo,@}]{gllﬁoyf}]{go]€}] .

0% & E 5% %
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over all y(s), and if

vy (s) = 'y(@ (s),s)
i

*
for all logically possible values of s, then 6 (s) maximizes

[z

over all 6(s) ¢ @(s).

7[R (8(s),8) - ¢ (y(8(s),5) E)]]{_SJ@}

II MI—E

Proof':

a) Interchanging the order of integration and summation in the
two inequalities implied by the conditions of the theorem results in

the following two inequalities:

ik

Il [:\’/]I—Ei

T - K -
7R, (8(s) ]{s|€} f[ D %[ DR COF J]{-Elé‘}

0

r

f[ (@ oeler - f

E"t

I []3

K
Vt[ Y xtm(g)yﬂ(ﬁ*(é):ﬁ)]] (sl€}
P )

0 k=1

holds for all 6(s) e @®(s), and

14

L r& ] T
g[é’o 7th_ Mo (20 ] |{S| & - é[t‘zfo 7,Cy(u(s) ’E)} {(s| €}
> ) € P e )] e
T\ s - ? C S),8 s
<ﬂ [_{lx (s, H{I } {L:OYHX——J—

holds for all y(s).

b) Combining the two inequalities in Step a) gives
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T
f[ Y 7,[8,(8(),8) - C, (z(s)8) JJ@@}
S

T
+ [E‘ 7 Mg (BT (5) - ka(ﬁ(i),g)]] {s|€}
s t=0
T N .
<[] 2 R0 + oy (e)0) 1 izl )
s Lt=0
T

£

S |2 7O - v, oeles

|l

which holds for all 6(s) e @(s) and all y(s).
c) Since the inequality in Step b) holds for all X(i) it must
also hold for y(s) = y(6(s),s) where 6(s) e ©(s). 1In this case

the terms involving A on the left side of the inequality in Step b)

cancel, and

143

IL”‘ 7[R (8(s8),8) - Ct(z(ﬁ(g),g),g)]]{glé‘}
=0

S

- . .
< JL2 nm@ @ o @ @.01ele
s Lt=0
T *
+ [T VtxtkT(S)[ka(S) - 7.,.(8 (8),8) J]{Elé’}
s Lt=0

holds for all 6(s) e @(s).

d) By the statement of the theorem

y (s) = y(8"(s),8)

for all logically possible values of s. Thus, the terms involving X\

on the right side of the inequality in Step c) cancel, and
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7[R (6(s)58) - ¢ .(z(e(s),5),8) ]:l{glé"}

Il.

holds for all 6(s) e ®(s). Hence the theorem is proved.

Lo

I,

(VAN

0

i 13

7t[Rt(9*(§),§) - Ct(z(é*(E),ﬁ),g) ﬂ{glé"}

The discussion of Theorem I in Chapter II 1s also relevant here.
TLike Theorem I, this theorem under uncertainty only provides sufficient
conditions for an optimal solution. However, the theorem requires no
restrictive assumptions other than real-valuedness of the functions
and it is applicable to problems under very complex forms of uncertainty.
Insight into Theorem IV is developed below and in the following sub-
sections.

The terms xtkT(E) can be interpreted as prices that depend on
the vector of uncertain state variables s. The price xtkT(E) is
the price assigned to the kth resource consumed 1n period t and
paid for in period T. The additional subscripts on the prices result
Tfrom simultaneous treatment of multiple resources and time in its most
general form. The additional subscripts are not due to the introduction
of uncertainty.

In the application of the results of this section, an equivalent

set of prices with only two subscripts can be defined. Let,

~]H3

Ao (8) = 2 Y a o (8)
Tk = =0 ttkT

By rearranging the statement of Theorem IV slightly, we can work with

prices having only two subscripts. TFor example, the first maximization
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problem in Theorem IV becomes:

maximize
6(s) ¢ g(s)

T K T
(20 - & Fonem@]uler.

In this form the prices are not multiplied by the discount factors.

The price ka(i) is interpreted as the price (in present value units)
assigned to the kth resource consumed or produced in period T. The
choice of which form of the prices to use rests on computational con-
siderations such as the number of storage locations required by the
computer program.

The expected present value of profit can be bounded at any stage
of an iterative search algorithm. The upper and lower bounds for
problems under uncertainty are analogous to the bounds for deterministic
problems. The upper bound follows directly from the inequality in

Step b) in the proof of Theorem IV.

BOUNDS :

Let 6'(s) meximize

P e
N
Il [*]3
oL~ﬂ

T
I3 nln @0 - e @re.00] 6] €)
t

S

T

over all 6(s) e @(s) and let y'(s) meximize

.

over all y(s). Then,

113

e

3
:6 t[k

g

D Mg (807, (8) - Ct(s_f(g),g)]] (s] €1}
720

1l

| 22 N—
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7
; 7[R (8'(8)58) - ¢, (g(8'(s),5),8) ]:l{§|€}

|
(S8
I
] 02 Ny

7[R (07(8),8) ~ C.(x'(5), J{SIS}

=4
il
A
ﬁgje
(@)

FIEEES

The successive approximations algorithm provides an interpretation

I [gr3

Ner ()Y, (8) = v, (87 (8)58) ]ﬂ{gl €}

0

of the prices xtkT(E)‘

SUCCESSIVE APPROXIMATIONS ALGORITHM:
1. Guess an initial 3-dimensional matrix of resource price functions
O(s), or start at Step 3 with a trial resource policy XP(E)'

A
2. Maximize

v Koz
([ 2 nmewe - & 2 vl el €)

k= l T—O

over all 0(s) e @ (s). Call the result Qn(g)
3. (Calculate a new 3-dimensional matrix of resource price functions

according to the relationships

. t =0, e , T,
n+l

Mo (8) = ¢, (y(s),s) k=1, ... , K,
B Ty 2(=)=(@%(2)s8) oo .

(Note: Ct( ) must be convex and differentiable for this

algorithm. )

b, If xn+l(§) = kn(g) for all logically possible values of s,

then the conditions of Theorem IV are satisfied and Q?(i)

is the optimal policy. Otherwise, return to Step 2 using

§?+l(§).
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Step 3 of this algorithm implies that the price function thT(i)
is the marginal cost in the tth period of the kth resource flow in the
Tth period as a function of the state variable vector s. The function
&(5) can be viewed as defining a many-to-many change of variables
from {§l€} to {2\._] €1, the joint probability distribution on the
prices. A similar change of variables is defined for the conditional
joint probability distributions at any point in time. However, the
stochastic process on prices implied by these distributions is usually
dependent on the stochastic process on the state variables.

A relaxation version of the algorithm is easily developed. 1In

this case, the price functions are calculated in Step 3 according to

the relationship

W l(e) — o §—k ¢, ((e)s) v (L-aE_(s)

v(s)=y(8"(2),s)

The price directive gradient algorithm, with minor modifications,

also applies to problems under uncertainty.

PRICE DIRECTIVE GRADIENT ALGORITHM:
1. Guess an initial 3-dimensional matrix of resource price functions

2

s)-

2. Maximize
« K
f[t Vt[Rt(Q(g),g) - 2,

k=17

INNaTE

(D7, (00,9 (2l €)

ek

over all 6(s) e O(s). Call the result QF(E).

3. Maximize
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over all y(s). Call the result y (s).

L. If yn(g) = X(QF(E),E) for all logically possible values

of s, tThen the conditions of Theorem IV are satisfied
and Qé(i) is the optimal policy. Otherwise, compute a

new matrix of resource price functions according to

n+l n n
tkT(E) = thf(i) - a(ka

(6"(s),s))

A (8) - v, (8
and return to Step 2.

Decomposition

The structural requirements for decomposition under uncertainty

are similar to the reguirements under certainty. If

J
J=1
t =0, > T
k=1, > Ko
and
e(s) = @,(s) x -+ x g(s)
where QJ(E) € C)j(i) but 9 é ® for i # j, then decompo-

sition can be achieved. In this case, Step 2 of the algorithms becomes

J independent subproblems, redquiring maximization of

3 . e

over all 6.(s) e ©.(s).
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The above result shows that by defining prices it is possible to
decompose & hard closed-loop problem under uncertainty into several

i

easier closed-loop problems under uncertainty. These subproblems
can be solved by a variety of techniques including dynamic programming
and decision trees.

Each subproblem requires knowledge of the resource price functions

and the joint probability distribution on s. Even if a particular

project is deterministic, i.e.,

Tta(ga(ﬁ):ﬁ) = rtJ(_e'J(E)) t = O, veo » T

and

xtjk(gj(g),g) = xtjk(g.(g)) t=0, .. , T, k=1, ... , K

the policy for the project usually is stochastic because the resource

prices, A depend on the uncertain state variables, s.

thT(E)’

Organizational Interpretation

Decomposition under uncertainty can be interpreted in terms of
a decentralized organization composed of an impresario, project managers,
and resource managers as defined in Section 2.1.

The project managers are responsible for maximizing the expected
present value of profit of their projects. The resources required by
the project managers are obtained at prices that are given by a stochastic

process on the uncertain state variables associated with a project.

+ Often it is possible to arrange things so that the subproblems are
open-loop problems. Open-loop decision problems are typically much

easier to analyze than closed-loop decislon problems because the decisions
do not depend on the resolution of the uncertainty. When the subproblems
are open-loop, the computational advantages of decomposition are consider-
able.
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In the successive approximations algorithm, the resource manager
simply computes the marginal cost of the resource ag a function of
5. The marginal cost i1s computed on the basis of the total resource

requirements of the projects as & function of s. If s 1is discrete,

the computation of prices is made for each value of S.

Under uncertainty it is possible to hypothesize additional managers
in the decentralized organization. For example, consider the role of
the information manager or expert who is responsible for assigning the
joint probability distribution, {§J €}, Among his alternatives is
the purchase of additional information by experimentation and research.
The calculation of the value of information in a decentralized organi-
zation or a decomposed problem is an interesting area for future research.

One of the objectives of such research might be to carefully define the

role of the information manager.

4.2 Problems under Uncertainty with Arbitrary Objective Functions

In this section we demonstrate that problems under uncertainty
with arbitrary objective functions can be treated by the methods devel-
oped in this dissertation. We will assume that arbitrary objective
functions in problems under uncertainty are the result of multi-:
attribute risk preference functions. A multi-attribute risk preference
function can encode both the decision maker's attitude towards uncertain
outcomes and his deterministic preferences among multiple measures of
performance.

The results of this section complete our development of the mathe-

matical fundamentals of decomposition. Together, these results are
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applicable to the most general resource allocation problem the author
can concelve. Yet, conceptually, the theory in this section is no
more difficult than the theory for the separable, single resource

problems in Section 2.1.

Introduction to Multi-Attribute Risk Preference Functions

A multi-attribute risk preference function is used to encode a
decision maker's attitude towards the outcome of a resource allocation
problem under uncertainty. 1In Section 2.3 ordinal wvalue functions
were introduced as a means of encoding a decision maker's attitude
towards multiple deterministic outcomes. In this section we extend
the introduction in Section 2.5 to problems under uncertainty.

One method of encoding a multi-attribute risk preference function
is to encode the decision maker's attitude towards deterministic outcomes
and then encode his risk preference. The deterministic part of the
problem results in a set of indifference curves as described in Section
2.5. If a numerical index is assigned to the indifference curves so
that the resulting ordinal value function has intuitive meaning, then
we can encode the decision maker's risk preference in terms of the
ordinal value function. For example, if the ordinal value function is
in monetary units we can encode the decision maker's risk preference
on money. If the ordinal value function is an equivalent uniform flow
of a resource, then we can encode the risk preference function by
comparing iotteries (probability distributions) on equivalent uniform
flow.

This two~step approach to the encoding of multi-attribute risk

preference functions is discussed formally in Boyd [ 5 ], Boyd and
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Matheson [ 8 ], Pollard [24], and Raiffa [25].

In this section we use the notation

u(z)

to denote a multi-attribute risk preference function defined on 3,
the vector of primary resources. The function u(g) is sometimes

written as

u(v(z))

to emphasize the intermediate step of encoding an ordinal value function.
The multi-attribute risk preference function has the property that
the optimal resource allocation is the allocation that maximizes the

expected value (expected utility)

w= [ u@)(z|&]

where ({z| £} = joint probability distribution on the vector of primary
resources.

The magnitude of the expected utility resulting from a decision
problem has little or no intuitive meaning. Hence, the bounds and
prices to be developed in this section would be difficult to interpret
in a meaningful way. A measure that does provide insight is the certain
equivalent.

A certain equivalent can be developed in terms of the ordinal value

function V( ). Generally, the ordinal value function is designed so

that the units of V( ) have intuitive meaning. If the risk preference
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+

function defined on V( ) has a unique inverse' then the certain

equivalent ordinal value is given by
Y@ = v D
-1,— )
where u ~(u) = inverse of wu( ) such that
uw(¥) = u .

The certain equivalent has the same units as the ordinal value function.
For example, an ordinal value function expressed as an equivalent
uniform flow corresponds to a certain equivalent uniform flow under

uncertainty.

The Example
The notation describing this example builds upon the notation

developed in Section 4.1. ILet

Et = the vector of uncertain state variables whose uncer-
tainty is resolved at the end of period <.
= the matrix of uncertain state variables where

|
Il

_S—= (§_O, seo s ET)

6(s) the decision variables describing a policy.

il

|

ztk(g(s),§) = amount of the ol primary resource produced in

+ u{ ) has a unique inverse if it is monotonic. This condition will
almost always be satisfied. 1In any case, the restriction is imposed
only to provide intuitively meaningful bounds and prices. The results
of this section can be developed without this monotonicity requirement
by working in terms of expected utility rather than certain equivalent.
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reriod t as a function of the policy and the
uncertain state variables. This function is
given by a detailed structural model of the problem.
Often, separate projects can be identified within
this structure.

Z(G(S),é) = the 5-dimensional matrix of primary resources.

multi-attribute risk preference (utility) function.

£
I

=t
I

certain equivalent value as a function of the expected

utility.

The example problem is to maximize the certain equivalent value

V(f ulz(a(s),s) s €3)

S

over all 6(s) ¢ @(s) where

{s|é°} = Joint probability density assigned on the basis of the
decision maker's prior information & ,
and ,®(s) =.set of all available policies. These policies can be

characterized as either delayed, dynamic, or immediate

resolution policies.

Mathematical Results (Thebrem.v, Bounds,'and.Algorithms)

The following theorem provides sufficient conditions for the
optimality of a solution to the example formulated in the previous

subsections:

*
THEOREM V: If 6 (s) maximizes
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T

K
E‘; \_" 5)z 6 S):S :,{ }
[t 0 k=1 My (87, (8(s)58) [{s] €

!

over all 6(s) e @(s) and if w(s) maximizes

(~1=

s Lt=0 k

Il

T
T et elen - [ 2 3 w6 le)

over all E(E), and 1if

W (s) = 2(87(2),8)
for all logically possible values of s, then Q%(E) maximizes

W( f[u(_Z_(Q(g),i))]{EIE})

s

over all 6(s) ¢ @(g).+

Proof:
a) The conditions of the theorem imply the following two inequali-

ties:

_s{[t:O oy P £ (8()55) | s

- 'S[[tfo K2 (8245, (8 () :_S_)il (s]€}

holds for all 6(s) ¢ ®(s), and

+ Theorem V also holds if the risk preference function depends directly
on s, i.e., u(z(8(s),s),s). Generally, problems with uncertain values
can be reformulated in terms of a risk preference function that does not
directly depend on uncertain variables. Pollard [24] provides an intro-
ductory discussion of problems with uncertain values.
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holds for all w(s).

D) Combining the two inequalities in Step a) implies that the

inequality
T *
T fuu(e)) (s €) - f [ Y T u (8l () - 2, (0 (g)@]]{gls’}
E] s t=0 k=1
T
< T [ ub(e) ] 1) - [‘" D (I (8)-z (e*s>,>]]{sr )
_V(g(z(_ slé gt:bk:iutk(i v, (8)-z, (87(s),8)]|{s|6&

holds for all w(s).
c) Since the inequality in Step b) holds for all w(s) it must

hold for all w(s) = z(8(s),s) where 6(s) ¢ ®(s). Hence,

holds for all 6(s) e @(s).

d) The theorem statement requires that

v (s) = 2(8 (s),8)

hold for all logically possible values of s. Thus,

V( J ulz(8(s),5)) (5] €1 < T( [u(z(8(s),8) (] €D

holds for all 6(s) e @(s). Hence, the theorem is proved.
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This theorem provides the theoretical basgis for transforming a
difficult problem with a multi-attribute risk preference function
into an expected value decision problem with a separable objective
function. The resulting expected value problem can be solved by the
decomposition methods developed in Section 4.1.

Upper and lower bounds on the certain equivalent value at each
stage in an iterative solution process are given by the inequality

in Step ¢) of the proof of Theorem V.

BOUNDS &

Let 6'(s) meximize

T
f[tE 3 utk(g)ztk(ﬁ(é):é)] (sl &3

8 =0 k=1

over all 6(s) e¢ @(s), and let w'(s) meximize

T K
W fawenelen - f[2 T 1 (D, ()] 1 €)

s =0 k=

over all w(s). Then,

T - S uzi(0(3),8)) (5] €1)
S
and -

T = V([ u' () s] €D

T K
Sl T () - z1<e'<s>,s>1]{s|€} .
J [ ) by (8D, (s g2 2 5

S

The bounds are expressed in terms of certain equivalent value.
If the problem is stated as one of maximizing utility, then the bounds

are difficult to interpret.
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The successive approximations algorithm follows from the necessary
and sufficient conditions for a solution to the second maximization

problem in the theorem statement.

SUCCESSIVE APPROXIMATIONS ALGORITHM:

1. Guess an initial matrix of resource price functions uo(

s)s
or start at Step 3 with a trial resource policy EP(E).
2. Maximize
L5 4

1

over all 6(s) e O(s). Call the result 9?(5)'
3. Calculate a new matrix of resource price functions according

to the relationship

n+1
M (8) =

where W = [ u(z(6"(s),8)) (s & ).
S

(Note: %(u(g)) must be concave and differentiable in z.)

+
I ¥ T l(s) - u'(s) for all logically possible values of s,

then, the conditions of Theorem V are satisfied and QF(E)
is the optimal policy. Otherwise, return to Step 2.
As in Section M.}, the operation in Step 3 can be viewed as a many-to-
many change of variables problem from fgl €} to {EI €1, the joint
probability distribution on the prices. These distributions, however,
are dependent.

The calculation of the prices in Step 3 involves two terms. The

first term is independent of both s and the indices t and k. The

175



second term can be interpreted as the marginal utility of the kth

resource flow in the tth period as a function of the state variables
8. The Tirst term converts the prices from a marginal utility to a
marginal certain equivalent.

In the relaxation version of the successive approximations algorithm

the prices are determined by the relationship

L O O | U Gt ©

where @ 1s the relaxation coefficient.

The successive approximations algorithm requires that V(u(g))
be concave and differentiable. Most carefully structured problems meet
this requirement. Thus, there appears to be little practical value
to the price directive algorithm which does not require the concavity
and differentiability restrictions. HNevertheless, for completeness
we will state the price directive gradient algorithm for the problem

posed in this section.

PRICE DIRECTIVE GRADIENT ALGORITHM:

1. Guess an initial matrix of resource price functions po(s).

2. Maximize

’— (6(s ),s)]{s‘(?}
if[t - b

over all 6(s) e @®(s). Call the result 9?(5).

3. Maximize

T K
w((s)) s |€)) - [" 2w (s) (sﬂ{ 3
f | '!t:'o k=1 P2 |

over all E(i)' call the result Eé(s).
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n
h. If w'(s) = 2(67(s),s) for all logically possible values
of s, then the conditions of Theorem IV are satisfied
n . ; . .
and 6 (E) is the optimal policy. Otherwise, compute

a new matrix of resource price functions according to

n+l( )

Mk = “f;k(i) - afw'(s) - z2(87(s),s)]

and return to Step 2.
The price directive gradient algorithm is derived by applying a
gradient search to the problem of minimizing the upper bound on the

certain equivalent value.

Decomposition

The results of this section show how to decompose the original
problem into (l) a problem of determining the appropriate price functions
Htk(i) and (2) the new maximization problem in Step 2 of the algorithms.
However, the most significant computational advantages arise when we
take advantage of the separable structure of this new problem. In
some cases this new problem decomposes directly. If not, we can apply
the results of Section 4.1 to decompose the new problem. The prices
ﬁ(i) on the primary resources can be determined simultaneously in a
carefully designed algorithm. Conceptually, we now have the means for
transforming an extremely difficult closed-loop decision problem under

uncertainty with complex preferences into the iterative solution of

a number of simple, open-loop, expected value, decision problems.

Organizational Interpretation

The organizational interpretation in Section L.l assigned decision
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making roles to the entrepreneurs and either price setting or decision
making roles to the resource managers. With arbitrary objective functions,
the impresario can be viewed as the manager of the primary resources.
In terms of the successive approximations algorithm the impresario sets
the prices on the primary resources.

The impresario can perform his task in two ways. One approach is
to encode a multi-attribute risk preference function by the methods
mentioned earlier in this section. An alternative approach is to
encode the prices directly without explicitly encoding the risk preference
function. Under uncertainty, however, the assessment demands placed
on the impresario are great because he must determine the prices for

every possible value of the state variables.

4.3 Computational Methods for Decomposition under Uncertainty

The essential difference between decomposition of deterministic
problems and decomposition under uncertainty is the problem of deter-
mining the prices as a function of the state variables, i.e., ﬁ(i)'

In problems with complicated probabilistic structures, effective methods
must be developed for calculating and characterizing the price functions.
In the most complicated problems, some form of approximation is necessary.

In this section we outline two general approaches to designing
computational methods for decomposition under uncertainty. The first
method is useful in problems where the state variables are discrete
or can be approximated by discrete variables. This method is based
on the use of a probability tree to characterize both the probability

distribution and the prices.
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The second method is useful in problems with continuous variables.
This method uses a Taylor series approximation to characterize the

price functions.

Probability Tree Methods

Any probabilistic process involving only discrete state variables
can be visualized in terms of a probability tree. Sometimes processes
with continuous variables can be approximated by a probability tree.
Probability trees are particularly useful where the uncertainty con-
cerning state variables is resolved gradually over a number of periods
in time.

+

Figure 4.1 illustrates a simple probability tree. A tree' is

composed of nodes and branches. Numerical values associated with a

tree are called attributes. There are two types of attributes: branch

attributes and node attributes. An example of a branch attribute is

the probability of going from the node on the starting (left) end of
a branch to the node at the terminal (right) end of a branch. An
example of a node attribute is the numerical value of the state vector
s assigned to a node.
The structure of a probability tree together with its attributes
describe a probabilistic process. When the node attributes are the
state vectors s and the branch attributes are the appropriate con-
ditional probabilities, then the tree completely describes the probability

distribution {§|€'} where £ is the state of information at the

starting node.

+ Other types of trees include decision trees and value trees. See
Rousseau [27].
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Expected values of the variables assigned as attributes are
computed by rolling back the tree in an operation similar to dynamic

il

programming. For example, the operation

b

(& e - 5 £ ot feler

can be performed by rolling back a probability tree. For a given
policy Qj(i)’ the numerical values of ijk(Qj(i),i), rtj(gj(i),g),
and the prices KtkT(E) are simply attributes of the nodes.

The optimization in Step 2 of the algorithms is performed by
rolling back a probability tree for each project. 1In some cases the
structure of the problem is such that rolling back a single tree will
provide all of the information necessary to determine the expected
values for more than one or all of the projects.

In the successive approximations algorithm the prices can be
determined by rolling forward through the tree so that every node is
reached. As we roll forward we keep track of the resource flows pro-
duced by the projects for the current policy. At each node we compute
the new prices according to the relationship in Step 3 of the algorithm
and assign them as attributes of the appropriate nodes.

Very complicated problems can be solved by carefully structuring
the probability tree and the associated computations. Dr. William

Rousseau [25 ] has developed a special compiler that greatly simplifies

;TrRaiffa [25] discusses the roll-back procedure for trees.

# This expected value operation is required in the decomposed version
of Step 2 of the algorithms in Section 4.1
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the task of structuring and manipulating complex trees. An important
feature of his compiler is that very large trees with lO)‘+ or 105 nodes
can be handled with minimal storage requirements. In some cases,
problems under uncertainty require approximately the same amount of
computer storage as the equivalent deterministic problem. The principle
limitation on the use of probability tree methods in decomposition

is the cost of computer processing time.

Approximation Methods

Approximation methods provide an alternative to probability tree
methods as a means of characterizing the prices as functions of the
uncertain state variables. The basic idea is to approximate the price
functions by functions that are easler to characterize.

Considerable ingenuity 1s often required to devise an approximation
to a multi-variable function. Usually, special characteristics of
the function must be exploited in order to develop a useful approxi-
mation. Thus, the approximations are specific to each problem and
it is difficult to provide general methods for approximating the price
functions.

In situations where local information provides a good description
of a function, approximations based on a Taylor series expansion about
an operating point are reascnable. This subsection provides a brief
discussion of Taylor series approximations of the price functions.
Taylor series methods are unlikely to be useful in the electrical
power system example because of the discrete nature of the declision
variables. Hence, we will only outline the development of this approxi-
mation method.
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Specificaliy, we will develop a Taylor series approximation for
the price functions ﬁ(i) required in the successive approximations
algorithm in Section h.l.+ An approximation to the price function
using the first three terms of a Taylor series expansion about the

operating point EO is given by

N
~ o 5 5 . °
Mep(®) T (8% + T g w(s)| L (s, - s))
n=1 n E
by M ¥ o o
* ol L 35 Os thT(E) o (8 - Sn)(sm - Sm)
n=1 m=1 “*n“®m s

where s = (Sl’ e+ 5 8.). This approximation is exact if thT(g)
is a quadratic or linear function of s.

When the approximation is valid over the range of s encountered
in a problem, the coefficients of the Taylor series expansion provide
all of the information contained in the price function. Given the
coefficients, the optimization problem in Step 2 of the algorithm can
be solved. In a computer program, only the coefficients would need
to be stored between iterations.

The practical value of Taylor series approximations depends on the
structure of the problem and the skill of the analyst in choosing an
appropriate set of coefficients. For large numbers of state variables
(N large) the number of coefficients is also large. However, the

structure of a problem will require that some of the coefficients be

fixed at zero. Furthermore, some of the other coefficients will be

1Tﬁith appropriate changes in notation the discussion also applies to
problems in Section 4.2 with arbitrary objective functions.
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small and can be eliminated from the approximation. Sensitivity analysis
is useful in deciding where to eliminate coefficients.

By delving more deeply into the structure of a problem we can
identify methods for calculating the coefficients of the Taylor series
approximation. In the successive approximations algorithm the price

functions are given by

o
Mpr (8) = C T ¢, (z(s),s)

v'(s)
! 4
14 — ¥ 1 . . . -
where ytk<§ ) = .zi thk<§j<§ ),s )." This function must be differ
entiated with respect to the state variables in order to calculate the

coefficients. For example, the coefficient

0
Os_ xtk7<§) 0
is given by
Waz ¢ (y(s),s8)
Tk °p E ’ X'<§? JE?
+ g %‘ & ¢ (y(s),8) %g ) . (6'(5),5)
Uﬁb =1 8§;£6§;£ E ’ X'<§?):§? 321 55; uJh 2= 7= E?

The first term in the above equation is nonzero only when the
regource cost function Ct< ) depends directly on s. The second
term depends on the sensitivity of the consumption of the resources

to changes in the state variable Sy The sensitivity may depend both

+'We assume that the decomposed versipn of the algorithm applies and
that Q}(E) is the policy for the j project determined in Step 2

of the algorithm.
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on the direct effect of the state variables and on changes in the
decision policy Q&(g) as a function of s .
The important point to note is that the coefficient can be calcu-

lated on the basis of the following data from the projects:

t (o] (0]
XTJK(QJ(E ))E ) u=20, ... , T
and
0 ., 0 O
gs—n Xujh(gj(-s— ,E ) SO h = :I_, sse 3 K .

The other coefficients require some of the same terms plus some addi-
tional second order terms for the second order coefficients. Thus,

we see that a Taylor seriles approximation provides a simple way to
characterize the consumption of resources by the projects as a function
of the state variables.

Additional computational simplifications are possible, but a
detailed discussion of them is beyond the scope of this subsection.
One idea is to describe the probability distribution L§|€] in terms
of the means and covariances of the distribution. Tor insight as to
when this approximation might be useful see Howard [19] on proximal
decigion analysis. Proximal decision analysis could also be applied
in analyzing the subproblems. The sensitivity information required
in proximal decision analysis could be used in calculating the coeffi-

cients of the Taylor series approximation to the price functions.
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CHAPTER V

ELECTRICAL POWER SYSTEM PTANNING UNDER UNCERTAINTY

This chapter has two purposes. Its first purpose is to demonstrate
the practicality of decomposition under uncertainty. Power system
planning under uncertainty tests the full range of generality provided
by the methods of Section k.1.

The second purpose of this chapter is to evaluate the importance
of uncertainty in power system planning. An example is developed that
incorporates uncertainty in nuclear fuel prices. The results of the
example suggest that other issues are more important than the quanti-
tative analysis of uncertainty in rapidly expanding power systems

like the Mexican system.

5.1 The General Problem

The explicit consideration of uncertainty in a power system planning
problem is difficult and expensive. Clearly, it is not economic to
quantitatively treat every uncertain variable. Many variables have
little effect on the installation decisions. Sometimes, the analytical
effort is hetter spent in capturing other aspects of the problem in
more detail.

Sensitivity analysis 1s useful in deciding whether to explicitly
treat the uncertainty in a particular variable. In a power system
problem, the important decision in an installation policy is the first
decision in time; the other decisions serve only as a background
policy for the evaluation of the first decision. By varying the state
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variables in a deterministic model over the range of the uncertainty,
we can identify the variables that are critical to the first decision.
When we choose to explicitly treat the uncertainty in a variable, then

we call it an aleatory variable to distinguish 1t from variables whose

uncertainty is not critical to the first decision.

Several variables in a power system problem are candidates for
aleatory variables. Some variables are so obviously important to the
decision problem that we include them as aleatory variables at an early
stage in the analysis. The reliability model developed in Chapter IIT
provides an example. The available capacity of each plant is an aleatory
variable. Similarly, uncertainty in hydro energy and short-term uncer-
tainty in demand can be included in the model developed in Chapter IIT.
Bach of these sources of uncertainty are fundamental to power system
planning and usuvally must be included before meaningful results can
be obtained.

The remaining candidates for aleatory variables are distinguished
by the characteristic that thelr uncertainty is resolved gradually
over time. For example, we expect our forecasts of demand, fuel prices,
and capital costs to improve as we approach the period for which the
forecast is made.

In a rapidly growing system, small changes in the rate of growth
of demand and changes in the trends of other variables can produce
spectacular changes in the size and composition of the power systenm
ten years later. When the system growth rate approaches or exceeds
the discount rate for a period of time, then the present value index

is extremely sensitive to small changes in the growth rate. This
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suggests that uncertainty in demand growth, for example, is important.
However, when uncertainty is resolved gradvally over time we are pro-
vided the opportunity to adjust installations decisions dynamically

in response to the resolution of the uncertainty. In terms of the first
decision in an installation policy, the net effect is often small.

In the original analysis of the Mexican system an exhaustive
sensitivity analysis was performed on the deterministic model. The
sensitivity analysis was closed-loop so that the installation policy
could respond to the changes in the state variables. The results of
the sensitivity analysis suggested that the explicit consideration
of uncertainty would not change the initial decisions in a policy.

In the next section we demonstrate decomposition under uncertainty
in terms of uncertainty in nuclear fuel prices. Nuclear fuel price
was identified as the most crucial variable in the original analysis
primarily because of its effect on the timing of the first installation

+

of a nuclear plant. The results of the example support the suggestion
that uncertainty is relatively unimportant in the analysis of installation

decisions in the Mexican system.

5.2 A Numerical Example

In this section we introduce uncertainty into the example formu-
lated in Chapter III. The numerical example discussed in this section

treats uncertainty in nuclear fuel prices. The example does not provide

+4Actually, the relative price of nuclear fuel to thermal fuel is the
important quantity. For our purposes, we can view forecasts of nuclear
fuel prices as conditional forecasts based on known thermal fuel prices.
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a complete analysis of uncertainty in the power system problem. The
purpose of the example is simply to demonstrate decomposition under

uncertainty.

Probabilistic Model of Muclear Fuel Prices

The first task in introducing an aleatory variable into a model
is to develop a probabilistic model of the variable. Probabilistic
models of processes evolving over time are difficult to construct.
There is no point in developing a more detailed model than is economic
in terms of the first decision in a policy. The model developed in
this subsection incorporates a level of detail appropriate to a pilot
or first-cut analysis of uncertainty in nuclear fuel prices.

Figure 5.1 contains a probability tree describing the model of
miclear fuel prices. Every three years the annual rate of change in
the fuel price is subject to change. The probabilities assigned
to the branches of the tree reflect the tendency of the rate to remain
steady rather than to fluctuate.

The nuclear fuel price in the numerical example in Section 3.5
decreases at a nominal rate of 1.7 per cent per year. In this model,
the probabilities are assigned to the branches of the tree so that
the expected rate of change is approximately the same. The expected
price of fuel in 1985, based on the information available in 1969, is
T4 per cent of the 1969 price. The standard deviation of the price
in 1985 is 12 per cent of the 1969 price. The data for this model was
generated by the author and does not reflect the expertise that would

be available from a person familiar with the nuclear fuel markets.
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In a full-scale analysis the probabilistic model might be based
on a detailed analysis of the nﬁclear fuel markets. The events that
cause changes in prices would be identified and probabilities would
be aggigned to these events. The interdependence of the nuclear and
fossil fuel markets could be modeled in detail. Since the purpose
of this example is only to demonstrate decomposition under uncertainty,

this hypothetical model is adequate.

Formulation of the Algorithm

The power system problem with uncertainty in nuclear fuel prices
can be viewed as a simple extension of the deterministic example

developed in Chapter ITI. TILet the vector

s = (so, cee s ST)

define the price of nuclear fuel in each period. The probabilistic
process that generates the prices is given by the joint probability

distribution
1€1 .

The uncertainty in nuclear fuel prices directly affects the total
hourly operating cost of nuclear plants.

By taking advantage of the insights developed in Section 4.1,
we can write a decomposition algorithm directly. The sequential
successive approximations algorithm with uncertainty in nuclear fuel

prices is as follows:
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SEQUENTTAI, SUCCESSIVE APPROXIMATIONS ALGORITHM:
— y,
1. Guess initial prices Ao(s), AS(s), aS(s), AS(s), and
T = th— Tt = it —
xg%(g) where i =0, ... , I, @and t=0, ... , T or
start with an initial policy 6(s) at Step 3.

2. Meximize

T
[ > v L-f(8,0.(8)) - vy (t,0.(s))]
t=T

o =

T
—

T
=0 (D 2y(t0(2))s T (b0 (8),5))

over all QT(E) € ®T(§) for T = 0. Repeat for T =
1, ... , T in ascending order of the index <. Call the
results 92(_s_) .

3. Calculate new prices according to the relations

c 3 — Vv
M(8) = = g Colwpoxe®) |
t xt(i)’xt(g)’xt(é)
c -V
xt(—s") - - a}'z Ct(xt’xt’xt) l’l( ) —n( ) Vn( )
t FEAED B P EGAE
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) _
7“(;(5) =T _‘Ct(xt’xt’\’/{t) n, \ —n, \ yn
axt xt(g),xt(g),xt(i)
oc 3
Ao (s) = = 0,(x,,h,)
T S T |20 ()
R
oh 3
As (S)='3‘—_O(X:h)
lt - hit t '_'t '_t Xl’l(s),hl’l(s)
B VPR G i Yt
where
n T n
(@) = T e (t00()
—n 1S n
R - T E o)
v LRV n
i - 3 %)
n g n
x.(s) = 2z e, (t,6.(s))
. t n
me(s) = T K (,6.(s),8)

T=0

4, If the new prices equal the prices determined on the previous
iteration (for all logically possible values of s), then

the optimal policy is Q?(g). Otherwise, return to Step 2

using the new prices computed in Step 3.

Tmplementation of the Algorithm

The algorithm wasg implemented on the computer by using the proba-
bility tree methods discussed in Section 4.3. The program was written
so that deterministic runs could be made simply by changing the input

data. The computer program is identical to the program developed in
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Chapter III, although some features of the program are unnecessary for
the deterministic example.

As in the deterministic example, the decision routine evaluates
the combinations of plants in the catalog for installation in each
year. TUnder uncertainty, it is important to carefully define the
state of information at the time & decision is made. Thus, the lead-
time between the decision to install a plant and the first operation
of the plant is important under uncertainty.

The lead-time between the decision to install a plant and its
first operation depends on the type of plant. Gas turbines typically
require two years or less lead—timej thermal units about three years;
and nuclear units about five or six years. In the numerical example,
we agsume all decisions are made with a six-year lead-time.*' A uniform
lead~time for all plants simplifies the design of the catalog under
uncertainty. If a sequential algorithm was not required to overcome
gaps, then there would be no need for the uniform lead-time assumption
gince installation decisionsg could be made independently for each type
of plant. The assumption is justified because the relative insensitivity
of the results to the uncertainty in nuclear fuel prices does not

Justify the cost of a more complicated decision routine for the sequential

algorithm.

Results of the Numerical Example

The optimal policy under uncertainty in nuclear fuel prices is

+'The lead-time is provided as an input parameter to the program and
can be changed.
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summarized in Figure 5.2. Only the installation decisions are shown
in this tree. The optimal policy was achieved in four iterations+
using a relaxation coefficient of 0.5. The initial policy is the
optimal policy from the deterministic example in Chapter III. The
difference in the expected present value of profit between the initial-
policy and the optimal policy in Figure 5.2 is only 1.2 million dollars.
The present value of the deterministic example was 1194.2 million dollars.

The most important feature of the optimal policy under uncertainty
is that the initial decisions are the same as in the deterministic
policy. Changes in the policy do not occur until 1982 when an additional
nuclear plant is instalied in the situation with the lowest nuclear
fuel price. The changes in the policy after 1982 are in the directions
our intuitions would suggest (more nuclear capacity when nuclear fuel
price is low, more thermal capacity when nuclear fuel price is high).

The insensitivity of the initial decisions to uncertainty in nuclear
fuel price supports the conclusion that uncertainty is relatively
unimportant in planning rapidly expanding power systems. The uncertainty
might be more important if nuclear plants were among the initial instal-
lations in the optimal deterministic policy. MNuclear plants operate
at relatively high load factors. Increases in nuclear fuel prices
cannot be offset by installing more efficient plants. Nevertheless,
it seems unlikely that the basic conclusion concerning uncertainty

would be changed when the initial installations include nuclear plants.

+ The total cost of the computer run summarized in Figure 5.2 was approxi-
mately §160.00. Prices on 1332 resources are calculated on each itera-
tion.
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Figure 5.2: OPTIMAL POLICY UNDER UNCERTAINTY IN NUCLEAR FUEL PRICES
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Conclusions Based on the Example

In this chapter we have explored the effects of uncertainty in
power system planning. On the basls of a previous analysis we selected
nmuclear fuel prices as aleatory variables for the numerical example.
The results of the numerical example suggest the following conclusion:
Uncertainty that is resolved gradually over time is unimportant for
capacity expansion planning in rapidly growing power systems. Thus,
additional analytical effort would be more effective if it were spent

on extending the scope of the model as suggested in Section 3.7.

+ 0f course, this conclusion depends on the degree of uncertainty,
but the general insensitivity of the initial decisions to the uncertainty
remains.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

One of the objectives of this dissertation is to develop & metho-
dology for solving complex strategic decision problems in situations
where detailed models are required. The other objective is to apply
the methodology to electrical power system planning.

The mathematical foundations of decomposition are developed by
using a series of five resource allocation problems. The first problem
involves the allocation of a single resource among a number of projects
under deterministic conditions. The second problem is a multiple
resource problem. If time is modeled in discrete periods, dynamic
problems can be viewed as multiple resource problems. The third
resource allocation problem has an arbitrary (nonseparabl } objective
function. Arbitrary objective functions arise in problems with multiple
measures of performance. Uncertainty is introduced in the fourth
problem. Finally, the fifth problem involves both arbitrary objective
functions and uncertainty.

Together, the five resource allocation problems incorporate every
aspect of complex decision problems. An important result of this
dissertation is that each of the five problems can be decomposed and
solved using the same basic techniques. TFurthermore, these technidques
require no advanced mathematics beyond elementary calculus.

The five related optimality theorems developed in this dissertation
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provide the theoretical basis for all of the results of this dissertation.
The theorems provide a "fail-safe" test for the optimal sclution of

a resource allocation or decision problem. Any solution satisfying

the conditions of the theorem is guaranteed to be a global optimum.

The theorems are applicable to problems with discrete and nonlinear
functions.

In their simplest form, the optimality theorems are related to a
theorem popularized by Everett [12]. Everett's theorem was developed.
for constrained problems under certainty. In this dissertation we
reinterpret Everett's theorem in terms of an unconstrained optimization
problem and extend its application to problems with arbitrary objective
functions and complex forms of uncertainty.

Two bagic algorithms that iteratively search for the optimal
solution are suggested by the optimality theorems. The successive
approximations algorithm follows directly from the unconstrained inter-
pretation of an optimization problem in terms of projects that consume
or produce resources for sale or purchase in a resource market. At
each stage in an iterative search, upper and lower bounds can be computed.
An important feature of the algorithms is that intermediate, suboptimal
solutions are feasible and can be implemented if desired.

Conceptually, the mathematical results of the theorem are valid
for very general problems. In some problems, gaps make the results
less useful. Several methods for treating gaps are discussed in this
dissertation. The solution of the electrical power system problem in
the presence of gaps was achileved by modifying the algorithms.

The results on decomposition under uncertainty are applicable
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to problems with very complex formsof uncertainty. The notation used
to describe problems under uncertainty greatly simplifies the analysis.
Powerful computational techniques for decomposition under uncertainty
are proposed. The literature on mathematical programming and economics
has very few nontrivial results on decomposition under uncertainty.

The sections on arbitrary objective functions extend decomposition
to problems with multiple measures of performance. Thus, the methodology
developed in this dissertation 1s applicable to problems with complex,
nommonetary objective functions. The decomposition approach also
provides insight into the problem of structuring preferences and
agssessing values.

The results of this dissertation also suggest a method for iden-
tifying the resources, resource markets, and projects that permit
decomposition. The application of the method to electrical power
system planning illustrates that problems with complex technical inter-
actions can be solved by decomposition.

The organizational interpretation of decomposition in terms of
decentralized organizations provides many insights. For example,
externalities in an economy are analogous to the complex technical
interactions in a power system problem. Insight into cdecision making
in organizations where profit is not the sole consideration is provided
by the sections on arbitrary objective functions. The results of this
dissertation can be viewed as contributing to the mathematical theory
of decentralized organizations. However, none of the practical aspects
of decentralization were explored.

The electrical power system example demonstrates that every aspect
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of this complicated strategic decision problem can be treated in a
practical way. Decomposition provides insight into power system planning
and suggests directions for extending the scope of the model. The
solution of the power system problem under uncertainty demonstrates

the practicality of decomposition under uncertainty. The results of

the example suggest the following conclusion: Uncertainty that is
resolved gradually over time is unimportant to capacity expansion

planning in rapidly growing power systems.

6.2 Directions for Fubure Research

The results of this dissertation open up several new areas for
future rescarch. The following is a partial list:
1. Additional algorithms are clearly possible. Algorithms that
take full advantage of previous results in generating new

solutions would be valuable.

N

Further theoretical study of the convergence of decomposition
algorithms would provide insight for choosing the best
algorithm for a given problem.

3. Tactics for applying penalty function methods in the most

effective way would be useful in solving problems with gaps.

k., Further development of approximation methods for decomposition

of problems under uncertainty appears possible,

5. The entire subject of information value theory.in the context

of decomposed problems and decentralized organizations has

not been investigated.

6. A general computer program could be written that would solve
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general nonlinear and discrete optimization problems under
uncertainty. The inputs to the program would describe

the resources, projects, and resource markets associated
with an optimization problem.

7. The results of this dissertation provide insight into resource
allocation methods for decentralized corporations. For
example, a capital budgeting system could be designed to
operate on an iterative basis using prices. Regearch into
the practical aspects of such systems would be valuable.

8. The design of new institutions in a society can be viewed as
an application of the results of this dissertation. Research

into the practical aspects of this problem would be valuable.

6.3 Conclusions

This dissertation is an application of the "divide-and-conquer"
philosophy of problem solving: When faced with a complex problem,
break it down into small parts which can bhe understood and analyzed
and then put the parts back together. We have demonstrated this
prhilosophy 1n our research on decomposition. The essential theoretical
results on decomposition were developed 1n terms of simple examples
and then extended in small steps to problems under uncertainty. The
results on decomposition extend the divide-and-conguer philosophy to
the optimization of complex decision problems. The ultimate appli-
cation of this philosophy will be its use in the design of new ingti-

tutions for society.

+For example, see the brief discussion at the end of Section 3.7.
Some additional insights into this problem are contained in Boyd and
Cazalet [6].
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